
作者 | 苏克1900
来源 | 高级农民工
长时间使用浏览器会积累大量浏览器历史记录,这些是很隐私的数据,里面甚至可能有一些不可描述的网站或者搜索记录不想让别人知道。不过,我们自己可能会感兴趣,天天都在上网,想知道长期下来是都在摸鱼还是有认真工作。
其次,了解下自己每天打开多少次网页、哪些网站上的最多、常搜哪些关键词,这些也很有趣。
下面就来给大家介绍一款 Python 编写的神工具,可以一键分析你的上网行为。我用了后发现了很多不可思议的结论。
比如访问次数最多的网站居然是微信公众号,7000 多次,看来弄自媒体占了大量上网时间。
看到了每天打开网站的次数,平均都有好几百次,8 月 8 号那天发生了什么,竟打开了 1600 多次!
然后又统计了停留时间最长的网页页面,在 http://md.aclickall.com/ 这个网站居然停留了 660 小时,这是个文章排版网站,因为经常要排版所以把该页面固定了起来。
然后统计出了搜索最多的十个关键词,python 居然是第一位!前十中基本都是数据编程相关的,没想到自己这么爱学习。
最后统计出了各大搜索引擎的使用率。google 的使用率达到了 97.3%,而百度只有不到 3%,大概是偶尔无法科学上网的时候用了下百度。
怎么样是不是挺有意思?下面就来说说怎么用这款工具,让你也可以分分钟了解自己的上网行为,非常简单。
这款 Python 工具其实就是分析浏览器的历史记录数据库文件然后可视化。这里的浏览器只支持 Chrome 和以 Chrome 为内核的浏览器,比如 Centbrower 、360极速浏览器等,其他浏览器比如 ie、Firefox 不支持。如果有登陆账号,桌面端和电脑端会一起分析,更全面。
第一步,打开网站:Browser History Analysis
接着上传你的浏览器历史记录文件,这个历史记录文件怎么获得呢?
新建一个标签页,输入 chrome://version/ 回车,可以打开你的浏览器详细信息:
复制「个人资料路径」到资源管理器打开,然后找到 history 文件复制一份到桌面。
接着就在刚才的网站中上传该文件(我的文件有 15MB 大),稍等片刻就可以得到上门的那些可视化分析结果。
你可能会担心上传浏览器历史记录是否安全,尽管放心,这个程序是开源的。
下面再简单说下如何用 python 一步步实现的这个程序功能的,这是一个很棒的 python 练手项目,涉及到了前后端的知识,整个程序包含多个文件:
Code
├─ app_callback.py 回调函数,实现后台功能
├─ app_configuration.py web服务器配置
├─ app_layout.py web前端页面配置
├─ app_plot.py web图表绘制
├─ app.py web服务器的启动
├─ assets web所需的一些静态资源文件
│ ├─ css web前端元素布局文件
│ │ ├─ custum-styles_phyloapp.css
│ │ └─ stylesheet.css
│ ├─ image web前端logo图标
│ │ ├─ GitHub-Mark-Light.png
│ └─ static web前端帮助页面
│ │ ├─ help.html
│ │ └─ help.md
├─ history_data.py 解析chrome历史记录文件
└─ requirement.txt 程序所需依赖库
每个程序实现的功能:
具体实现思路大致分为下面几点:
历史记录 history 是一个 sqllite 数据库文件,连接数据库查询然后调用数据库中的信息并存储。
可视化图形使用的是可交互式的 plotly 库。
小结
上网记录是很重要的隐私数据,平常自己可能无法从中直接发现什么,使用 Python 简单一分析就可以发现很多东西,所以平时尽量注重隐私保护。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10