
作者 | Necati Demir
翻译 | CDA数据分析研究院
我们到处都看到有关AI的新闻,有时,我们会看到AI领域一些激动人心的事情,有时我们也会看到一些有关人工智能如何取代或破坏我们工作的文章。偶尔,我们还会看到一些文章谈论人工智能将如何摧毁人类。
在这篇文章中,我不会讨论普遍性的人工智能或者想要摧毁人类的邪恶AI。我将重点关注当前的AI,它主要基于可以进行预测的算法,并讨论AI的经济学如何运作以及它如何影响业务。我还想提一下,本文的内容受到以下两方面的高度影响——预测机器:人工智能的简单经济学和人机结合:人工智能时代的工作重构。
本文分为三个主要部分:
技术的演变
在开始之前,我想讨论一些类似于我们今天如何看待人工智能的历史事件之间的相似之处。我将举例说明特定技术的广泛使用如何改变了我们的思维方式。
电子计算机时代
计算机做的最好的是算术。在我们熟悉的计算机出现之前,术语“计算机”被用于描述那些进行文字计算的人,我们称之为“ 人类计算机”。
随着技术的进步,计算变得更加便宜和快速,我们开始考虑算术方面的一切。摄影是一个很好的例子 - 历史上,修改或应用视觉效果到照片是一种化学反应。然而,现在,我们使用艺术家和摄影师均可访问的算法,通过各种软件将效果以数学方式应用于照片。
这是我们在商品/服务成本下降时如何思考的一个很好的例子; 我们开始考虑如何应用新技术来解决我们当前遇到的问题。AI也是如此。
互联网时代
当互联网被广泛使用时,它在各个行业都取得了巨大的变化,而这一切都是关于不同领域的成本降低。例如,分销商品和服务的成本变得更低,这引发了电子商务行业的诞生。公司最终改变了他们的战略,要么幸存,要么死亡。
一旦商品或服务的成本下降,我们就会更频繁地使用它,我们也可以在网上看到这一点。这也改变了我们的心态,我们将整个行业转移到网上。除了电子商务,另一个例子可以在搜索引擎的使用中看到:我们不再使用百科全书来搜索信息,而是使用Google或其他搜索引擎。
人工智能的时代
人工智能的成本在计算能力和工具方面变得越来越便宜。每个新工具/库都有助于机器学习开发人员在预测问题上花费更少的时间。例如,Google的TensorFlow,AutoML甚至scikit都可以作为示例显示。我们还可以将GPU计算的使用量增加,作为人工智能成本降低的一个例证。
对公司下一季度的销售预测是一个明显的预测问题,但开发自动驾驶汽车并不是十年前的预测问题。人工智能的成本降低正在改变我们的思维方式,这意味着我们开始将各种问题视为预测问题。我们已经在工厂等受控环境中使用自动驾驶汽车,可以使用if-else 编程条件对车辆进行编程 。改变思维方式并将其视为预测问题,帮助工程师开发可在野外使用的自动驾驶汽车。
基本上,这就是它的工作模式:一名工程师教人工智能在不同条件下人类会做什么,这使得车载软件的诞生成为可能,驾驶员可以使用数千英里的汽车,而不是在数百英里之后疲惫不堪。人工智能学会了人类会做什么,并开始预测它应该做什么。这是在预测方面考虑问题的一个非常好的例子。
战略
这是一个主要问题:AI会影响公司的战略和商业模式吗?如果您认为AI是一种可以帮助您做出决策的预测工具,那么它可能无法清楚表达它将如何影响策略,因为它只是帮助您做出决策的另一个工具。但是,如果您开始将AI视为可以高精度预测的预测工具,那么可能会改变策略本身。《 预测机器:人工智能的简单经济学 》一书中有一个很好的例子 。
当我们从亚马逊购买和购买商品时,它会将包裹运送到我们的办公室/家中。因此,这种方法可以称为购物然后运输方法。我们也知道亚马逊有一个推荐引擎,它会在您浏览页面时推荐项目。我们不会购买所有推荐商品,但它至少会推荐我们可能感兴趣的商品。让我们假设亚马逊开始预测您将以高精度购买的商品。如果您开始购买80%的推荐商品,亚马逊可能会决定在购买之前发送商品 - 我们称之为发货 - 然后购物。这是业务战略的一个明显变化,因为一旦项目到达您的家,您将发回20%的商品,并且当前的亚马逊价格建模不基于此假设。也许,亚马逊将决定每周向您的城市发送一辆卡车以收集退回的物品,这将完全改变亚马逊如何收取您的信用卡,如何打包物品以及如何处理退回的物品。所有这些策略的改变都是人工智能的好处,它具有更高的预测准确性。
我相信我们可以通过考虑如果AI能够以更高的准确度预测将会发生什么来研究像以前的亚马逊例子那样的更多思想实验。
人与人之间的互动
人类和人工智能的互动将来会如何发展?他们会竞争,还是会一起工作?我将通过阅读《人类+机器:在人工智能时代重构工作》这本书来关注这些问题 。这本书的作者说,有些情况下人类可以补充人工智能,人工智能也可以补充人类。
人类补充AI
人类可以在三个方面补充AI:训练,解释和维持。
训练
AI需要学习数据,这称为 训练阶段,因此它可以进行预测。
将来,我们可能会有训练代理商,专门根据该业务的要求专注于训练AI。如果是工厂,训练代理可以负责训练机器人; 如果是电子商务业务,训练代理可能负责汇总历史数据。
解释
我们需要了解AI如何以及为何为特定问题提供特定答案。
通常,我们在可解释性和AI的准确性之间进行权衡。与易于解释的方法相比,黑盒AI方法具有更高的准确性。尽管有一些工具可以解释为什么黑盒AI会做出特定的预测,但我们可能需要一个可以理解和解释AI结果的工作角色。
维持
我们需要确保AI按预期运行。
2015年,大众汽车工厂的一个机器人抓住了一名工人并致命地粉碎了他。我们可能需要负责确保AI系统按预期工作的角色。
AI补充人类
人工智能的潜力为人类提供了超级大国,因为人工智能可以比人类更快,更精确地进行预测。这些超级大国可以用它们带给特定情况或行动的价值来表达。
放大
AI工具可以帮助人类提高人类的能力。在《人类+机器:人工智能时代的重构工作》一书中 ,作者使用了Autodesk的Dreamcatcher软件的例子,该软件使用遗传算法来迭代可能的设计。
设计师可以借助此工具设计出便宜且坚固的椅子灯。AI尝试创建基于给定标准的设计,并将结果提供给设计人员。然后,设计师使用选择的设计之一,并在该设计上使用他们的创造力来进行最后的润色。
这类似于计算机时代计算机给人们提供的帮助 - 就AI可以提供哪些帮助而言,这是一个新的令人兴奋的能力水平。
相互作用
AI可以充当助手,通过与他们互动来帮助他们。亚马逊的Alexa,Google Home和Apple的Siri都是这种交互式AI代理的突出例子。随着每次迭代改进这些代理,我们将更频繁地开始使用它们,它将成为我们的一部分,就像我们使用智能手机所做的更深层次的版本。那些代理人将是我们的私人助理,他们将补充我们。
增加
在工厂中可以找到以AI为燃料的物理增强的例子。虽然工厂现在由机器人操作,但它们大多是基于规则的系统并且放在笼子里以确保安全。机器人将作为同事来帮助人类,其设计目的是在工厂内自由移动和工作时不伤害他人。
结论
梅赛德斯生产计划负责人马库斯·谢弗(Markus Schaefer)表示,虽然有些人担心“机器人效率更高,但未来人类工人将被丢弃”,他说:“我们正在努力实现自动化最大化工业过程中更重要的一部分。“新技术确实给我们的工作方式带来了巨大的变化,但是犁的发明并没有消除对农场工人的需求,计算机的发明也没有消除对数学家的需求。与所有技术革命一样,人工智能的出现将用于帮助人类达到新的范式,而不是完全取代它。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28