京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | James Vincent
来源 | 数据与算法之美
英文标题 | If you can identify what’s in these images, you're smarter than AI
在视觉方面,AI和人类的差距有多大?来自UC Berkeley等高校的研究人员创建了一个包含7500个“自然对抗实例”的数据集,在测试了许多机器视觉系统后,发现AI的准确率下降了90%!在某些情况下,软件只能识别2%-3%的图像。这样的AI若用在自动驾驶汽车上,后果不敢想象!
近几年来,计算机视觉有了很大的改善,但仍然有可能犯严重的错误。犯错如此之多,以至于有一个研究领域致力于研究AI经常误认的图片,称为“对抗性图像”。可以把它们看作计算机的光学错觉,当你看到树上有一只猫时,人工智能看到了一只松鼠。
▲AI把爬上树的猫误认为松鼠
研究这些图像是很有必要的。当我们把机器视觉系统放在AI安全摄像头和自动驾驶汽车等新技术的核心位置时,我们相信计算机和我们看到的世界是一样的。而对抗性图像证明并非如此。
对抗性图像利用机器学习系统中的弱点
但是,尽管这个领域的很多关注点都集中在那些专门设计用来愚弄AI的图片上(比如谷歌的算法把3D打印的乌龟误认为是一把枪),但这些迷惑性图像也会自然的出现。这类图像更令人担忧,因为它表明,即便不是我们特意制作的,视觉系统也会犯错。
▲谷歌AI误认为这只乌龟是枪
为了证明这一点,来自加州大学伯克利分校、华盛顿大学和芝加哥大学的一组研究人员创建了一个包含7500个“自然对抗实例”(natural adversarial examples)的数据集,他们在这些数据上测试了许多机器视觉系统,发现它们的准确率下降了90%,在某些情况下,软件只能识别2%-3%的图像。
下面就是一些“自然对抗实例”数据集的例子:
▲AI眼中是“火炬”
▲AI眼中是“瓢虫”
▲AI眼中是“日晷”
▲AI眼中是“棒球运动员”
▲AI眼中是“人开卡丁车”
数据有望帮助培养更强大的视觉系统
在论文中,研究人员称这些数据有望帮助培养更强大的视觉系统。他们解释说,这些图像利用了“深层缺陷”,这些缺陷源于该软件“过度依赖颜色,纹理和背景线索”来识别它所看到的东西。
例如,在下面的图像中,AI错误地将左侧的图片当作钉子,这可能是因为图片的木纹背景。在右边的图像中,它们只注意到蜂鸟饲养器,但却错过了没有真正的蜂鸟存在的事实。
下面的四张蜻蜓照片,AI在颜色和纹理上进行分析后,从左到右依次会识别为臭鼬、香蕉、海狮和手套。我们从每张图片中都可以看出AI为什么会犯错误。
AI系统会犯这些错误并不是新闻了。多年来,研究人员一直警告说,利用深度学习创建的视觉系统是“浅薄”和“脆弱”的,它们不会像人一样灵活地理解世界上的一些几乎相同的细微差别。
这些AI系统在成千上万的示例图像上进行了训练,但我们通常不知道图片中的哪些确切元素是AI用于做出判断的。
一些研究表明,考虑到整体形状和内容,算法不是从整体上看图像,而是专注于特定的纹理和细节。本次数据集中给出的结果似乎支持这种解释,例如,在明亮的表面上显示清晰阴影的图片,会被错误地标识为日晷。
AI视觉系统真的没救了?
但这是否意味着这些机器视觉系统没得救了?完全不是。一般这些系统所犯的错误都是小错,比如将排水盖识别为沙井,将货车误认为豪华轿车等。
虽然研究人员说这些“自然对抗性的例子”会骗过各种各样的视觉系统,但这并不意味着可以骗过所有系统。许多机器视觉系统非常专业,比如用于识别医学扫描图像中的疾病的那些专门系统。虽然这些系统有着自己的缺点,可能无法理解这个世界和人类,但这并不影响它们发现并诊断癌症。
机器视觉系统有时可能会很快且有瑕疵,但通常都会产生结果。这样的研究暴露了机器成像研究中的盲点和空白,我们下一步的任务就是如何填补这些盲点了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12