京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 小天
数据挖掘,英文名叫Data mining,一般是指从大型数据库中将隐藏的预测信息抽取出来的过程,而更为精确的解释则是“从数据中挖掘知识”。
这个概念乍眼一看有点懵,小天举个栗子解释,相信就比较容易理解:
假如某东需要预测用户在未来5天内的购买需求,以达到精准营销的目的,那么此时完全可以借助数据挖掘实现。
通过数据挖掘技术和机器学习算法,在以某东真实的用户、商品和行为数据(脱敏后)为基础的情况下,构建一个用户购买商品的预测模型,输出高潜用户和目标商品的匹配结果,从而提供高质量的目标群体,实现精准营销。
也就是说,我们能够从海量的数据中挖掘出有用知识服务于我们的工作。
而就目前而言,数据挖掘大致上是可以分为四个层次:纯粹数据加工、傻瓜式挖掘、较为自由的挖掘以及算法拆解和开发。
(一)纯粹数据加工
这一层次主要侧重于变量的加工和预处理,主要的加工工具就是大家比较熟悉的SQL和SAS base。
从源系统或数据仓库,对相关数据进行提取、加工、衍生处理,生成各种业务表。紧接着,以客户号为主键,将这些业务表整合汇总出一张大宽表,而这张宽表就是所谓的“客户画像”。
(二)傻瓜式挖掘
傻瓜式操作的优点就是让数据挖掘变得入手快且简单,但是,众所周知傻瓜式操作必然存在缺陷,比如挖掘的过程会很单调无趣,没办法批量运算模型等等。而较为典型的工具有SAS EM和clementine。
这两种工具已经嵌入了很多较为传统成熟的算法、模块和节点(如大家很熟悉的神经网络以及前几天小天提到的决策树等)。只需鼠标的托拉拽,基本上就可以满足你挖掘数据的需求。
因此,在熟练操作这些工具的情况下,若想进一步提升建议需要抛弃它们。
(三)较为自由的挖掘
在这个层次,典型的工具就是R和Python这两个开源工具,前者是统计学家开发的,而后者则是计算机学家开发的。
它们不但有较多前沿且成熟的算法包调用,还能对既有的算法包进行修改调整,以适应分析需求,十分的灵活。此外,Python在文本、社会网络方面的处理,功能比较强大。
(四)算法拆解和自行开发
到了这一层次,说明你们已经拥有了重新编写算法代码的能力,比如用自己的代码实现逻辑回归运算过程,甚至根据业务需求和数据特点,更改其中一些假定和条件,以提高模型运算的拟合效果。
一般而言,大多数人会利用python、c、c++进行算法拆解和开发。
可以看到,四个层次中出现最多的就是python,因此可以这么说掌握了python,掌握数据挖掘也就不在话下了!
而根据当前互联网的招聘和对技能的需求来说,当你已经顺利度过前三个层次的时候,建模分析师的职位是妥妥的,如果再更进一步到达了第四层次,相信你就是当之无愧的算法工程师了!
那么,怎么才能更好地掌握数据挖掘,最高效的学习路径应该是什么样的呢?
此时,我们最先要做的就是了解数据挖掘的大致流程。
(一)数据读取
既然是叫数据挖掘,那么可以看出数据是重中之重,因此第一步就应该把数据读取出来。
(二)特征理解分析
数据读出来了,但并不代表这些数据都是有用的,因此需要根据数据的特征进行理解和分析,考虑变量与结果的关系,最后绘图得出结论,辅助判断,进而选出有价值的数据。
(三)数据清洗与预处理
选出了有价值的数据就可以马上建立模型了吧?别想太多,还得先清洗和预处理数据。虽然这一步看似很简单,但是实际上它是整个数据挖掘过程中最耗时的,大概占了70-80%的时间。
如何对数据进行恰当的处理使得最终能够获取最合适的数据是这一步需要解决的。请记住,数据决定了模型的上限。
(四)建立模型
完成了最重要的第三步之后,就可以开始建模了,通过多种算法的对比以及参考他人的策略进行建模与优化,最终得出合适的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27