
作者 | 挖数
香港位于广东深圳的南边,面积是1106平方公里,比中国的四大一线城市都小。
不仅面积小,其人口密度也大,香港每平方公里的人口数比四大一线城市都多。
看起来好像跟深圳差不多,实际大不相同。
香港境内山多平地少,是一座受到海水淹没的多山地体,如果计算建设用地面积的话,香港仅有19%的面积可以开发,而这个比例深圳是50%。
因此换算成实际可建设面积的话,香港是35595人/平方公里,深圳是13046人/平方公里,这个差距就拉开了。
香港分3个区,分别是香港岛、九龙和新界。
再拆分成小的区域:
香港岛:中西区、东区、南区、湾仔区;
九龙:九龙城区、深水埗区、油尖旺区、黄大仙区、观塘区;
新界:北区、西贡区、沙田区、大埔区、离岛区、葵青区、荃湾区、屯门区、元朗区。
其中香港岛的中西区是整个香港的中央商务区(CBD),是最多商业办公楼和娱乐场所聚集的地方,中环就位于该区。
查询地产公司的数据,以中西区的 上环/中环/金钟 这一带为例,在售的二手房中最贵的一套是——
总价2.2亿港币,香港的房子是以尺为单位,1尺大约等于0.093平方米,这里的1702尺换算成平方米的话是158平方米,一平方米是139万港币,也就是122万人民币。
这套是可以望见维多利亚港的,是真正港人口中的“千尺豪宅”。
当然这种上亿的房子属于稀缺物种,该区域更多的房子总价在500-2500万港币之间。
看了一下500-600万港币这一区间房子的实用面积,都在30平方米以下。
在该区域随机选取5套房子,取他们的均价,大概在21万人民币/平方米左右。(这里取的建筑面积)
用以上方式计算整个香港岛的房子均价:
九龙的均价是:
新界的均价是:
以上数据可以看出,香港的房子真的很贵,最贵的尖沙咀一平方米要22万人民币,最便宜的离岛区也要9.4万人民币。
贵不贵跟深圳对比一下就知道,深圳福田和南山的房子大概在6-15万/平方米,比较远的宝安区的沙井在4-6万/平方米,这样看香港房价大约是深圳的2倍。
按照香港2018年17500元港币的月工资中位数,普通人要不吃不喝29年才能买得起一套总价600万港币,实用面积在30平方米以下的房子。
通过地产公司的城市指数可以看到,香港的房价从2004年开始一路飙涨
众观历史,整个香港的楼市大概经历了 7轮 上涨。
第1轮上涨:1945-1950年
战争期间,国内很多中产阶级、资产家带着家属纷纷涌入香港,短短三四年间,香港的人口从50万暴涨到200万。
很多房屋在战争中受损,香港住房问题出现从未有过的紧张,稀缺的住房带动了房价的急剧上涨。
第2轮上涨:1953-1958年
1953年,香港得益于港口的地域优势,经济开始复苏,一些企业家比如霍英东等创造了“分层出售”和“分期付款”这一史无前例的销售模式,将房屋买卖的主体由之前大公司整栋购买,变成个人分层分户购买。
从此房屋交易量暴增,“炒楼花”一词第一次出现在香港人的视线。
第3轮上涨:1960-1965年
这一时期,亚洲地区快速发展,香港作为“四小龙”之首,工业化快速推进,国际资本纷纷涌入香港,香港进入制造业的黄金时期。
随之而来的是楼市再次繁荣,地价房价齐上涨。
第4轮上涨:1968-1973年
1968年,在政府主导下,香港产业结构开始转型,由制造业转向金融和商贸业,GDP快速增长,每年都超过10%,被称为香港奇迹。
以李嘉诚为代表的制造业巨头纷纷转型房地产,长江实业、新鸿基、新世界等地产公司开始跑马圈地,大量热钱快速流入香港,不仅楼市狂飙,股市也从200多点一路上涨到最高的1774点。
第5轮上涨:1976-1981年
这一时期,香港实行了一系列优惠政策,比如资金自由往来、税费减免等,一大批国际金融机构和世界500强公司纷纷进驻,现代金融中心的定位也被首次提出,同时期香港的人口也突破了500万。
长江实业、新鸿基、新世界地产等巨头纷纷上市,李嘉诚、郑裕彤等成为了身家上百亿的富豪,楼市也在各种造富神话中进一步上升。
第6轮上涨:1985-1997年
这个时期,港币随着美元贬值,银行利率大幅降低,楼市被极大地刺激起来,加上很多香港人预期回归后大陆的富人会涌入香港,到时房价会被托上天,不买房就是傻子。
于是10年间香港房价涨幅超过6倍,基本每个月都涨10%,大家都无心工作,心思都在房子上,每天见面聊的最多的是谁家物业这个月又涨多少,谁谁通过炒楼赚了千万身家。
第7轮上涨:2004年至今
这段时期,香港停止了廉价房屋计划,并逐年压缩商品房的土地供应,与稀少的供应端相比,香港本地居民突破750万,需求端越来越旺盛。
随着2006年香港推出优才入境计划,吸引外地人来港定居,大陆的各路科技新贵、私企老板、体育明星、演员艺人等纷纷涌入香港购置物业,推动了楼市的新一轮上涨。
香港楼市的每一次上涨都伴随着下跌,但大趋势还是一直往上的,房价如此高企,出现劏房、棺材房、笼屋之类的也就见怪不怪了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27