京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 挖数
香港位于广东深圳的南边,面积是1106平方公里,比中国的四大一线城市都小。
不仅面积小,其人口密度也大,香港每平方公里的人口数比四大一线城市都多。
看起来好像跟深圳差不多,实际大不相同。
香港境内山多平地少,是一座受到海水淹没的多山地体,如果计算建设用地面积的话,香港仅有19%的面积可以开发,而这个比例深圳是50%。
因此换算成实际可建设面积的话,香港是35595人/平方公里,深圳是13046人/平方公里,这个差距就拉开了。
香港分3个区,分别是香港岛、九龙和新界。
再拆分成小的区域:
香港岛:中西区、东区、南区、湾仔区;
九龙:九龙城区、深水埗区、油尖旺区、黄大仙区、观塘区;
新界:北区、西贡区、沙田区、大埔区、离岛区、葵青区、荃湾区、屯门区、元朗区。
其中香港岛的中西区是整个香港的中央商务区(CBD),是最多商业办公楼和娱乐场所聚集的地方,中环就位于该区。
查询地产公司的数据,以中西区的 上环/中环/金钟 这一带为例,在售的二手房中最贵的一套是——
总价2.2亿港币,香港的房子是以尺为单位,1尺大约等于0.093平方米,这里的1702尺换算成平方米的话是158平方米,一平方米是139万港币,也就是122万人民币。
这套是可以望见维多利亚港的,是真正港人口中的“千尺豪宅”。
当然这种上亿的房子属于稀缺物种,该区域更多的房子总价在500-2500万港币之间。
看了一下500-600万港币这一区间房子的实用面积,都在30平方米以下。
在该区域随机选取5套房子,取他们的均价,大概在21万人民币/平方米左右。(这里取的建筑面积)
用以上方式计算整个香港岛的房子均价:
九龙的均价是:
新界的均价是:
以上数据可以看出,香港的房子真的很贵,最贵的尖沙咀一平方米要22万人民币,最便宜的离岛区也要9.4万人民币。
贵不贵跟深圳对比一下就知道,深圳福田和南山的房子大概在6-15万/平方米,比较远的宝安区的沙井在4-6万/平方米,这样看香港房价大约是深圳的2倍。
按照香港2018年17500元港币的月工资中位数,普通人要不吃不喝29年才能买得起一套总价600万港币,实用面积在30平方米以下的房子。
通过地产公司的城市指数可以看到,香港的房价从2004年开始一路飙涨
众观历史,整个香港的楼市大概经历了 7轮 上涨。
第1轮上涨:1945-1950年
战争期间,国内很多中产阶级、资产家带着家属纷纷涌入香港,短短三四年间,香港的人口从50万暴涨到200万。
很多房屋在战争中受损,香港住房问题出现从未有过的紧张,稀缺的住房带动了房价的急剧上涨。
第2轮上涨:1953-1958年
1953年,香港得益于港口的地域优势,经济开始复苏,一些企业家比如霍英东等创造了“分层出售”和“分期付款”这一史无前例的销售模式,将房屋买卖的主体由之前大公司整栋购买,变成个人分层分户购买。
从此房屋交易量暴增,“炒楼花”一词第一次出现在香港人的视线。
第3轮上涨:1960-1965年
这一时期,亚洲地区快速发展,香港作为“四小龙”之首,工业化快速推进,国际资本纷纷涌入香港,香港进入制造业的黄金时期。
随之而来的是楼市再次繁荣,地价房价齐上涨。
第4轮上涨:1968-1973年
1968年,在政府主导下,香港产业结构开始转型,由制造业转向金融和商贸业,GDP快速增长,每年都超过10%,被称为香港奇迹。
以李嘉诚为代表的制造业巨头纷纷转型房地产,长江实业、新鸿基、新世界等地产公司开始跑马圈地,大量热钱快速流入香港,不仅楼市狂飙,股市也从200多点一路上涨到最高的1774点。
第5轮上涨:1976-1981年
这一时期,香港实行了一系列优惠政策,比如资金自由往来、税费减免等,一大批国际金融机构和世界500强公司纷纷进驻,现代金融中心的定位也被首次提出,同时期香港的人口也突破了500万。
长江实业、新鸿基、新世界地产等巨头纷纷上市,李嘉诚、郑裕彤等成为了身家上百亿的富豪,楼市也在各种造富神话中进一步上升。
第6轮上涨:1985-1997年
这个时期,港币随着美元贬值,银行利率大幅降低,楼市被极大地刺激起来,加上很多香港人预期回归后大陆的富人会涌入香港,到时房价会被托上天,不买房就是傻子。
于是10年间香港房价涨幅超过6倍,基本每个月都涨10%,大家都无心工作,心思都在房子上,每天见面聊的最多的是谁家物业这个月又涨多少,谁谁通过炒楼赚了千万身家。
第7轮上涨:2004年至今
这段时期,香港停止了廉价房屋计划,并逐年压缩商品房的土地供应,与稀少的供应端相比,香港本地居民突破750万,需求端越来越旺盛。
随着2006年香港推出优才入境计划,吸引外地人来港定居,大陆的各路科技新贵、私企老板、体育明星、演员艺人等纷纷涌入香港购置物业,推动了楼市的新一轮上涨。
香港楼市的每一次上涨都伴随着下跌,但大趋势还是一直往上的,房价如此高企,出现劏房、棺材房、笼屋之类的也就见怪不怪了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11