
作者 | 挖数
香港位于广东深圳的南边,面积是1106平方公里,比中国的四大一线城市都小。
不仅面积小,其人口密度也大,香港每平方公里的人口数比四大一线城市都多。
看起来好像跟深圳差不多,实际大不相同。
香港境内山多平地少,是一座受到海水淹没的多山地体,如果计算建设用地面积的话,香港仅有19%的面积可以开发,而这个比例深圳是50%。
因此换算成实际可建设面积的话,香港是35595人/平方公里,深圳是13046人/平方公里,这个差距就拉开了。
香港分3个区,分别是香港岛、九龙和新界。
再拆分成小的区域:
香港岛:中西区、东区、南区、湾仔区;
九龙:九龙城区、深水埗区、油尖旺区、黄大仙区、观塘区;
新界:北区、西贡区、沙田区、大埔区、离岛区、葵青区、荃湾区、屯门区、元朗区。
其中香港岛的中西区是整个香港的中央商务区(CBD),是最多商业办公楼和娱乐场所聚集的地方,中环就位于该区。
查询地产公司的数据,以中西区的 上环/中环/金钟 这一带为例,在售的二手房中最贵的一套是——
总价2.2亿港币,香港的房子是以尺为单位,1尺大约等于0.093平方米,这里的1702尺换算成平方米的话是158平方米,一平方米是139万港币,也就是122万人民币。
这套是可以望见维多利亚港的,是真正港人口中的“千尺豪宅”。
当然这种上亿的房子属于稀缺物种,该区域更多的房子总价在500-2500万港币之间。
看了一下500-600万港币这一区间房子的实用面积,都在30平方米以下。
在该区域随机选取5套房子,取他们的均价,大概在21万人民币/平方米左右。(这里取的建筑面积)
用以上方式计算整个香港岛的房子均价:
九龙的均价是:
新界的均价是:
以上数据可以看出,香港的房子真的很贵,最贵的尖沙咀一平方米要22万人民币,最便宜的离岛区也要9.4万人民币。
贵不贵跟深圳对比一下就知道,深圳福田和南山的房子大概在6-15万/平方米,比较远的宝安区的沙井在4-6万/平方米,这样看香港房价大约是深圳的2倍。
按照香港2018年17500元港币的月工资中位数,普通人要不吃不喝29年才能买得起一套总价600万港币,实用面积在30平方米以下的房子。
通过地产公司的城市指数可以看到,香港的房价从2004年开始一路飙涨
众观历史,整个香港的楼市大概经历了 7轮 上涨。
第1轮上涨:1945-1950年
战争期间,国内很多中产阶级、资产家带着家属纷纷涌入香港,短短三四年间,香港的人口从50万暴涨到200万。
很多房屋在战争中受损,香港住房问题出现从未有过的紧张,稀缺的住房带动了房价的急剧上涨。
第2轮上涨:1953-1958年
1953年,香港得益于港口的地域优势,经济开始复苏,一些企业家比如霍英东等创造了“分层出售”和“分期付款”这一史无前例的销售模式,将房屋买卖的主体由之前大公司整栋购买,变成个人分层分户购买。
从此房屋交易量暴增,“炒楼花”一词第一次出现在香港人的视线。
第3轮上涨:1960-1965年
这一时期,亚洲地区快速发展,香港作为“四小龙”之首,工业化快速推进,国际资本纷纷涌入香港,香港进入制造业的黄金时期。
随之而来的是楼市再次繁荣,地价房价齐上涨。
第4轮上涨:1968-1973年
1968年,在政府主导下,香港产业结构开始转型,由制造业转向金融和商贸业,GDP快速增长,每年都超过10%,被称为香港奇迹。
以李嘉诚为代表的制造业巨头纷纷转型房地产,长江实业、新鸿基、新世界等地产公司开始跑马圈地,大量热钱快速流入香港,不仅楼市狂飙,股市也从200多点一路上涨到最高的1774点。
第5轮上涨:1976-1981年
这一时期,香港实行了一系列优惠政策,比如资金自由往来、税费减免等,一大批国际金融机构和世界500强公司纷纷进驻,现代金融中心的定位也被首次提出,同时期香港的人口也突破了500万。
长江实业、新鸿基、新世界地产等巨头纷纷上市,李嘉诚、郑裕彤等成为了身家上百亿的富豪,楼市也在各种造富神话中进一步上升。
第6轮上涨:1985-1997年
这个时期,港币随着美元贬值,银行利率大幅降低,楼市被极大地刺激起来,加上很多香港人预期回归后大陆的富人会涌入香港,到时房价会被托上天,不买房就是傻子。
于是10年间香港房价涨幅超过6倍,基本每个月都涨10%,大家都无心工作,心思都在房子上,每天见面聊的最多的是谁家物业这个月又涨多少,谁谁通过炒楼赚了千万身家。
第7轮上涨:2004年至今
这段时期,香港停止了廉价房屋计划,并逐年压缩商品房的土地供应,与稀少的供应端相比,香港本地居民突破750万,需求端越来越旺盛。
随着2006年香港推出优才入境计划,吸引外地人来港定居,大陆的各路科技新贵、私企老板、体育明星、演员艺人等纷纷涌入香港购置物业,推动了楼市的新一轮上涨。
香港楼市的每一次上涨都伴随着下跌,但大趋势还是一直往上的,房价如此高企,出现劏房、棺材房、笼屋之类的也就见怪不怪了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10