京公网安备 11010802034615号
经营许可证编号:京B2-20210330
01 前言
在日常的生活中,大家偶尔会看到朋友圈发的照片由一张被切成九张的效果,有时由一张照片被切成九张照片所带来的视觉盛宴是不一样的!
现在许多 P 图工具里面自带了这种功能,而微信小程序里也有专门可以切图的工具。为了熟练巩固的练习调库操作,今天就来带大家看看,如何用 Python 实现这个小功能。
02 成果展示
先来看看成果,原图为文章开始的图片,一图切九图朋友圈:
九张图发朋友圈的时候,还有个比较有意思的事,上传时是乱序的,还需要你自己像玩拼图一样自己摆位置。
03 思路讲解
这个小功能的实现利用了 Python 中的一个图形处理库,Pillow。
Pillow是由从著名的Python图像处理库PIL发展出来的一个分支,通过Pillow可以实现图像压缩和图像处理等各种操作。
1pip install pillow # 安装 pillow 库
大体实现思路以下几步:
04 代码讲解
按照上面的思路,写出代码:
1. 填充原图形的背景,生成大正方形图
1def fill_images(image):
2 """ 填充正方形白色背景图片 """
3 width, height = image.size # 获取图片的宽高
4 side = max(width, height) # 对比宽和高哪个大
6 # 新生成的图片是正方形的,边长取大的,背景设置白色
7 new_image = Image.new(image.mode, (side, side), color='white')
9 # 根据尺寸不同,将原图片放入新建的空白图片中部
10 if width > height:
11 new_image.paste(image, (0, int((side - height) / 2)))
12 else:
13 new_image.paste(image, (int((side - width) / 2), 0))
14 return new_image
代码中的顺序,可以理解为下面几个图形,首先在原有的照片基础上覆盖上白色背景:
其次,比较宽和高的生成规则是下面两个图,我们可以将背景调成黑色,便于观察,当宽大于高的像素时,你的照片就是横着铺满正方形的,而背景图填充上下,黑色背景是不是有股电影大片的气息:
当高大于宽的像素时,你的照片就是竖着铺满正方形的,而背景图填充左右:
第一步到这里就完成了,你得到的就是一张被背景颜色填满的正方形。
2. 对大正方形进行切割
1def cut_images(image):
2 """ 切割大正方形图 """
3 width, height = image.size
4 one_third_width = int(width / 3) # 三分之一正方形线像素
6 # 保存每一个小切图的区域
7 box_list =
9 """
10 切图区域是矩形,位置由对角线的两个点(左上,右下)确定,
11 而 crop 实际要传入四个参数(left, upper, right, lower)
12 """
13 for x in range(3):
14 for y in range(3):
15 left = x * one_third_width # 左像素
16 upper = y * one_third_width # 上像素
17 right = (x + 1) * one_third_width # 右像素
18 lower = (y + 1# 下像素
19 box = (left, upper, right, lower)
20 box_list.append(box)
21 image_list = [image.crop(box) for box in box_list]
22 return image_list
首先定位三分线:
根据左上,右下两个像素点的位置,确定新的图形:
最后将每个小正方形的左上和右下像素点进行存储,以元组的形式写到list中,在调用 crop 函数进行图像复制。关于 crop 函数,官方文档:
3. 存储切割后的9张图片(不放代码了,比较简单)
05 总结
Pillow 库对图像处理操作支持非常友好,而本次的小工具核心就在于如果进行对原有图片进行切割。内嵌两次循环来逐行遍历,双重遍历的思想会经常用到,这块可以注意下。
当然如果要是嫌源代码运行麻烦,可以打成 exe 文件来使用哟。这下又可以在朋友圈秀操作了!(比如改改背景呀,黑色背景什么的。)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31