京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在我们日常数据分析工作中,数据处理的时间占据了一大半,相信这是大家做梦也没想到的事情吧?如果我们要想提高数据分析的效率,我们就得熟悉地运用一些工具,比如说数据仓库。在这篇文章中我们就给大家介绍一下数据仓库的工作方法,希望这篇文章能够更好地帮助大家处理各类数据分析工作。
说到数据仓库,大家可能不太清楚,那么什么是数据仓库呢?其实数据仓库是一个面向主题的、集成的、相对稳定的、反应历史变化的数据集合。而数据分析就是基于业务需求,结合历史数据,利用相关统计学方法和某些数据挖掘工具对数据进行整合、分析,并形成一套最终解决某个业务场景的方案就是数据分析的过程。一般来说,数据分析的工作流程有六个,分别是业务理解,数据理解,数据准备,建模,评估,部署。这就是数据分析工作的流程。当然,数据分析对数据质量的要求非常高,而且对数据的理解也必须深刻。所以说,要想理解数据就需要很长时间。而数据仓库的有点就是能够高效、快速地进行数据理解和处理,所以说,我们利用数据仓库进行数据分析无疑能够给我们的工作带来很大便利,那么我们到底怎么做呢?
第一就是数据理解工作,数据仓库是面向主题的,所以其自身与业务结合就相对紧密和完善,更方便数据分析师基于数据理解业务。我们需要对数据划分得非常清晰,我们需要做的就是拿到业务需求,理解数据仓库的模型,数据理解也就是一件简单的事情了。
第二就是对数据质量的要求,我们都知道,数据分析要求数据是干净、完整的,而数据仓库最核心的一项工作就是ETL过程,而数据仓库已经对源系统的数据进行了业务契合的转换,以及对肮脏数据的清洗,这就为数据分析的数据质量做了较好的保障。
第三就是数据跨系统关联。其实各业务源系统的数据经过ETL过程后流入数据仓库,当不同系统数据整合到数据仓库之后,能够解决两个问题,第一就是跨系统数据收集问题,第二就就是跨系统关联问题。
相信大家看了这篇文章以后已经知道了如何使用数据仓库进行优化数据分析工作了吧?我们在进行数据分析工作的时候可以通过数据仓库这个实用的工具进行提高工作效率,但前提是我们得好好学习、学会,并学以致用。只有熟练掌握,我们才能在实操的时候得心应手,让自己的表现更加出类拔萃。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12