
在机器学习中,我们会遇到很多算法,而这些算法都是能够帮助机器学习解决很多问题, 可以说,机器学习是整个人工智能的核心。当然,机器学习的算法特征之一就是模型,那么大家是否知道机器学习建模的过程是什么呢?下面我们就给大家介绍一下这个内容。
建模的过程离不开模型的求解,我们假设输入特征变量记为X,输出变量记为Y,他们对应的具体取值分别记为x和y,输入变量X可以是标量也可以是向量。本系列课程中除非特殊声明,否则特征向量都是列向量,因此输入实例x的列向量可以表示为:x=(x(1),x(1),...,x(i),...,x(n))T。
那么这个式子是什么意思呢?其中x(i)表示x的第i个特征值,因此x是一个具有n个特征值的特征向量。注意,我们将会使用另一种表示方法xi表示第i个输入实例。那么第i个输入实例的第k个特征值就表示为x(k)i。因此,对于具有N个训练实例的有监督学习的训练数据集就可以表示为:T={(x1,y1),(x2,y2),...,(xN,yN)}。当我们有了以上的数据表示,那么对于一个机器学习算法来说,基本上的提出过程可以总结为四个步骤。
第一就是根据特征向量的数据分布提出一个合适的模型函数 y=f(x;θ) 来估计参数分布。第二个步骤就是提出一个合适的损失函数 L(x,y) 计算对于训练数据集上的所有训练样本估计的误差损失大小:L(x,y)=1NN∑i=1L(yi,f(xi))。第三个步骤就是用合适的优化算法使得损失函数带有参数的 L(x,y) 的值最小化,即:minf∈F1NN∑i=1L(yi,f(xi))。第四个步骤就是求解最优化上述函数值得到 L(yi,f(xi)) 的最小值,从而得到原函数 y=f(x;θ) 的参数值θ的解:θ=(θ(1),θ(2),...,θ(K))。
在上述的式子中,参数个数K与模型函数 f(x;θ)相关,与特征向量维数以及数据集个数无关。这样新的类标未知的样本x就可以直接输入到函数f(x)中就可以得到新的预测类标值y。
我们为什么要重视建模过程呢?其实机器学习算法要素有四点,分别是特征、模型、策略和算法。所以我们一定要对模型给予足够重视。在这篇文章中我们给大家介绍了关于机器学习建模过程的相关知识,通过对这些知识的介绍,相信大家已经知道了机器学习建模的过程,希望这篇文章能够帮助大家更好地理解机器学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26