京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就目前而言,人工智能被认为是一个万能的工具,也有很多媒体把人工智能描述得无所不能,然而现实并非如此。当前看来,人工智能还是有不少缺陷的,很多技术也有待改进和创新,在未来也是如此。在某些地方人工智能是无法超越人类的,那么具体的内容是什么呢?下面我们就给大家介绍一下这些内容。
1.不能推理
人工智能不能够做推理,尤其是跨领域推理,跨领域推理是人类的强项。人类强大的跨领域联想、 类比能力是跨领域推理的基础。在推理小数中警察可以从嫌疑人的一顶帽子中遗留的发屑、沾染的灰尘,推理出嫌疑人的一些情况,但是这不是人工智能能够做到的事情。
2.不具有抽象能力
目前的深度学习技术,几乎都需要大量训练样本来让计算机完成学习过程。可人类,哪怕是小孩子要学习一个新知识时,通常只要两三个样本就可以了。这其中最重要的差别,也许就是抽象能力的不同。计算机很难具有抽象能力,也可以这么说,我们目前还不知道怎么教计算机做到这一点。人工智能界,少样本学习、无监督学习方向的科研工作,目前的进展还很有限。但是,不突破少样本、无监督的学习,我们也许就永远无法实现人类水平的人工智能。所以如果人工智能有了这项能力,那就是一个十分大的突破。
3.自我意识
人和机器最大的区别就在于人具有自我意识,机器是没有自我意识的,自我意识是对自己身心活动的觉察,即自己对自己的认识,具体包括认识自己的生理状况、心理特征以及自己与他人的关系。自我意识是具有意识性、社会性、能动性、同一性等特点。所以我们不难看到人工智能是没有自我意识的。
4.审美和情感
机器是没有审美和感情,虽然机器已经可以仿照人类的绘画、诗歌、音乐等艺术风格, 能够复制创作出电脑艺术作品来,但机器并不真正懂得什么是美。同样,每个人都因为情感的存在,而变得独特和有存在感。情感是人类之所以为人类的感性基础,但是显然这种能力机器无法习得。
从这篇文章中我们可以看到所谓的万能的人工智能也不具备很多能力,可见人工智能是无法取代人类的。所以说,大家不必惊慌人工智能给我们带来的坏处或不好的影响。相信科技的发展会朝向越来越美好的方向,造福整个地球。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28