
数据挖掘是数据分析工作中一个前提工作,毕竟数据分析是需要分析数据的,而数据的来源就是需要数据挖掘才能够得到我们想要的数据。所以说,没有数据挖掘这项工作,我们的数据分析工作基本上就没什么意义。由此看来,提高数据挖掘能力是一个十分重要的事情,那么如何提高数据挖掘的能力呢?下面我们就给大家介绍一下这个问题。
1.对业务有深刻的理解
通常来说,没有深刻的业务理解去做数据挖掘往往是事倍功半,行业的业务理解越透彻,就越能抓住数据中本质的特征,诸如图像识别等场景已经可以靠神经网络来自动查找特征了,但大多数行业领域不行,还是要靠业务专家,多组织一次讨论获取的灵感可能远远好过于在算法上折腾一个月。而没有更多更好的数据去训练模型,这就是一件十分困难的事情了,一定要相信数据的重要性远远超过算法,很多初级的建模师算法能力很强,但就是做不成事,往往是因为其对于自身企业的数据理解太浅所致,这些都是我们需要注意到的事情。
2.根据业务选择模型
如果数据不变,数据挖掘训练的边际效益并不高,同样的一份数据用不同的算法反复训练,比如F1差值并不是很大大,如果要尽快的提升模型的效果,要讲究点方法,尽量遵循业务大于数据,而数据大于算法的优先级。只有遵循了这个优先级,知道那个相对比较重要,那么我们才能够做好模型的选择。
3.勤于取数训练
一般来说,企业的数据挖掘师都需要通过长时间的取数训练,如果能做过数据仓库的更好,这样对于企业的数据体系有个全局的认识,在特征选择时有更多的发挥空间,大数据中最强调的一个特征是维度多,也一定程度说明了数据多样的重要性。同时数据建模师如果不理解运营商的业务和数据,则可能无法想到这个维度。所以,数据挖掘师还是要清楚这些内容的。
在这篇文章中我们给大家介绍了很多提高数据挖掘能力的方法,具体包括对业务有深刻的理解、根据业务选择模型以及勤于取数训练。这些方法都是能够帮助我们提高个人的数据挖掘业务能力,从而更好地进行数据挖掘工作。希望这篇文章能够帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14