京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能是现在十分火热的技术和话题,可见当下科技发展的魅力尤其是人工智能领域给人们的生活带来极大的提升和便捷,手机中和各类智能产品的智能语音对话也给我们的生活带来了很大的乐趣。而人工智能的核心技术是机器学习以及深度学习神经网络,但是神经网络技术的发展当前十分缓慢,究竟个中的原因是什么呢?
1.反向传播算法对神经网络的影响
通用计算机的出现使得人工神经网络的研究经历了一波复苏。同时,一种算法逐渐成熟,而这个算法就是反向传播。就目前而言,反向传播算法都是训练神经网络的最主要方法。但是,神经网络的规模依然受限于当时的硬件条件而导致规模依然不大。因此,人们暂时放弃了神经网络的发展。
2.神经网络发展的障碍
神经网络发展的障碍有两个,第一就是计算机的性能,第二就是训练数据不够多。正是由于这个原因,使得神经网络在最初的几十年内都没有表现出过人的性能,如果增加神经网络的深度,就会让神经网络的训练速度变慢。在那个内存不过几十MB,GPU还没有出现的年代,要训练一个小规模的深度神经网络模型,需要花上数周甚至数月。而训练数据不够多也使得神经网络发展受到了阻碍,而随着特征维度的增加,算法的搜索空间急剧变大,要在这样的特征空间中寻找适合的模型,需要大量的训练数据。神经网络要解决的问题,通常具有成千上万维的特征,维度越高,特征也就越多。
3.先验假设
通过一个非常有用的先验假设对神经网络进行简化,这是因为我们这个世界的事物都是通过更小的事物组合而成的。不仅实际的物体满足这一先验假设,抽象的概念也一样如此。因此深度神经网络利用了这一假设,通过将网络层数加深,每一层神经元都是前面一层神经元输出的组合,通过这样的假设,将整个搜索空间大大减小。然而,训练深度神经网络依然需要大量的数据,才能得到一个比较好的结果。所以说,数据的存量是神经网络发展的前提。
在这篇文章中我们给大家介绍了关于人工智能中的神经网络发展缓慢的原因,其实神经网络发展还是非常具有潜力的,只是需要我们人类不断地攻克难题,让其发展更上一个台阶。因此,有致力于学习和专研人工智能的朋友,一定要好好学习神经网络哟,没准将来的神经网络的飞跃发展,起到关键性和决定性作用的人就是你!大家好好加油吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27