
人工智能涉及到的知识有很多,我们在前面的文章中提到了深度学习,而深度学习正是人工智能中的其中一种非常重要的技术,掌握了这些我们才能够更好地学习人工智能的系统知识,才能够合理地运用人工智能以及控制人工智能。关于人工智能的知识,下面我们给大家介绍人工智能的技术成熟度,目前究竟做到了哪种地步。
1.人工智能中涉及到的技术
在人工智能的发展中,大数据处理、深度学习和GPU计算三个方面的技术起到了关键的推动作用。大数据的采集、基础管理和云计算、GPU计算等技术应该说比较成熟了。突破智能的难点还是在机器学习。作为机器学习的子领域,深度学习虽然很实用,但它还是神经网络那套算法理论,在很早之前就提出来了。不管是支持向量机、贝叶斯、决策树等浅层学习算法,还是深度网络衍生出来的深度强化学习、迁移学习、对抗学习等,大部分理论、算法在几十年前的人工智能教材上都能找到,唯一不同的加了个深度,有强大的计算力支持,能处理大数据了。所以人工智能的技术成熟度还是不如我们想象的那样好的。
2.人工智能的技术成熟度做到了什么地步呢?
对于现阶段的人工智能成熟度来说,只能说是勉强及格,当然,这还是由于深度学习帮助的原因。至于深度学习技术发展的后劲如何,短时间内是否发展成为科技大佬所说的那样可怕,那要看未来人工智能中深度网络的工程能力和发展速度了,没有大数据资源和大规模计算资源的一般研究机构和人员是很难知晓的。综上描述,我们可以认为人工智能的发展其实只是及格而已。就目前而言,人工智能开源框架更是基本等同于深度学习,虽然一些深度学习框架备受开发人员推崇,但还是缺乏完整的人工智能技术链,深度学习被捧得太高不是好现象,传统的知识库、专家系统和规则式AI与深度强化、迁移、对抗等学习的融合才是AI发展的正途,另外从芯片、算法、平台、架构到应用等方面来看,弱AI要全面开花落地都还有较长的路要走。
在这篇文章中我们给大家介绍了关于目前人工智能的技术成熟度的具体内容,从这篇文章中我们不难看出,其实人工智能的技术成熟度并不是我们想象的那么好,不过我们不要悲观,相信在未来人工智能能够解决更多的问题,给人类和地球造福更多领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15