京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能涉及到的知识有很多,我们在前面的文章中提到了深度学习,而深度学习正是人工智能中的其中一种非常重要的技术,掌握了这些我们才能够更好地学习人工智能的系统知识,才能够合理地运用人工智能以及控制人工智能。关于人工智能的知识,下面我们给大家介绍人工智能的技术成熟度,目前究竟做到了哪种地步。
1.人工智能中涉及到的技术
在人工智能的发展中,大数据处理、深度学习和GPU计算三个方面的技术起到了关键的推动作用。大数据的采集、基础管理和云计算、GPU计算等技术应该说比较成熟了。突破智能的难点还是在机器学习。作为机器学习的子领域,深度学习虽然很实用,但它还是神经网络那套算法理论,在很早之前就提出来了。不管是支持向量机、贝叶斯、决策树等浅层学习算法,还是深度网络衍生出来的深度强化学习、迁移学习、对抗学习等,大部分理论、算法在几十年前的人工智能教材上都能找到,唯一不同的加了个深度,有强大的计算力支持,能处理大数据了。所以人工智能的技术成熟度还是不如我们想象的那样好的。
2.人工智能的技术成熟度做到了什么地步呢?
对于现阶段的人工智能成熟度来说,只能说是勉强及格,当然,这还是由于深度学习帮助的原因。至于深度学习技术发展的后劲如何,短时间内是否发展成为科技大佬所说的那样可怕,那要看未来人工智能中深度网络的工程能力和发展速度了,没有大数据资源和大规模计算资源的一般研究机构和人员是很难知晓的。综上描述,我们可以认为人工智能的发展其实只是及格而已。就目前而言,人工智能开源框架更是基本等同于深度学习,虽然一些深度学习框架备受开发人员推崇,但还是缺乏完整的人工智能技术链,深度学习被捧得太高不是好现象,传统的知识库、专家系统和规则式AI与深度强化、迁移、对抗等学习的融合才是AI发展的正途,另外从芯片、算法、平台、架构到应用等方面来看,弱AI要全面开花落地都还有较长的路要走。
在这篇文章中我们给大家介绍了关于目前人工智能的技术成熟度的具体内容,从这篇文章中我们不难看出,其实人工智能的技术成熟度并不是我们想象的那么好,不过我们不要悲观,相信在未来人工智能能够解决更多的问题,给人类和地球造福更多领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27