
机器学习是一帮计算机科学家想让计算机像人一样思考所研发出来的计算机理论。在机器学习中,最常见的问题就是分类问题。所谓的分类问题,就好比我们用机器学习算法,将病人的检查结果分为有病和健康,是一个医学方面的二分类问题。当然,机器分类的方式是多种多样的,今天我们就在这篇文章里着重为大家介绍一下以学习形式对机器学习进行的分类,让大家对机器学习有更好的了解。
按照学习形式分类的话,机器学习的知识分为非监督学习和监督学习这两种,首先我们说一下非监督学习的内容,其实非监督学习就是归纳性学习,利用K方式,建立中心,通过循环和递减运算来减小误差,达到分类的目的。而非监督学习的研究领域还是十分广泛的,一般来说,机器学习领域的研究工作主要围绕三个方面进行。第一个方面就是面向任务的研究,具体就是研究和分析改进一组预定任务的执行性能的学习系统。第二个方面就是认知模型,具体就是研究人类学习过程并进行计算机模拟。第三个方面就是理论分析,具体就是从理论上探索各种可能的学习方法和独立于应用领域的算法。当然,机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统没有什么学习能力,最多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。对机器学习的讨论和机器学习研究的进展,必将促使人工智能和整个科学技术的进一步发展。这也就是现在的研究人员都开始重视机器学习的原因。
那么监督学习是什么呢?所谓监督学习就是监督学习是从标记的训练数据来推断一个功能的机器学习任务。在监督学习中,每个实例都是由一个输入对象(通常为矢量)和一个期望的输出值(也称为监督信号)组成。监督学习的训练集要求是包括输入和输出,也可以说是特征和目标。训练集中的目标是由人标注的。常见的监督学习算法包括回归分析和统计分类。这些就是监督学习的主要内容。
实际上,机器学习的内容各自都保持着独立,而非监督学习所学习的知识显然超过原有系统知识库所能蕴涵的范围,所学结果改变了系统的知识体系, 因而这种类型的学习被人们广泛使用。而监督学习尽管所学的知识能提高系统的效率,但仍能被原有系统的知识库所蕴涵,即所学的知识的特征和目标被训练的十分出色,因而这种类型的学习方式得到了研究人员的认可。这两种类型的主要区别在于,监督式学习是使用基础事实完成的,或者换句话说,我们事先知道样本的输出值应该是多少。
通过文章的介绍,想必大家心中的谜团已经解开,对于机器的学习就是需要这样一点一点深入,毕竟一口吃不成个胖子,机器学习也是需要慢慢积累的。机器学习的征程可谓任重道远,既然选择了这个方向,就一定要加倍努力,不枉费时间,也不辜负青春。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28