
我们在进行数据挖掘工作的时候,我们需要使用一些模型,而模型中还需要对数据类型进行处理,我们一定要重视模型的使用,这样我们的数据挖掘模型的成功率就能够大增。我们在这篇文章中给大家介绍一下预测模型,同时也给大家介绍一下数据挖掘中使用的内容类型。
1.预测模型
在预测模型中,所有预测工具都要求我们预测连续数值。无法预测已保存为文本的数字。如果数据包含数据类型错误的数字列,可以使用Excel函数创建数字数据类型正确的列的副本。如果执行此操作,请务必删除包含文本数字的列的副本,以便值不会重复。当然,如果要创建回归模型的散点图,则输入变量也必须是连续数字。这样我们可以根据使用内容类型生成更好的模型。所谓“内容类型”是应用于列的属性,用来指定模型使用列数据的方式。执行分析时,算法可以使用内容类型作为说明或提示。如果使用在此外接程序中提供的向导和工具,则不必担心内容类型。但是,如果使用将模型添加到结构建模选项将新模型添加到现有数据,则可能会得到与内容类型相关的错误。
得到错误的原因我们就必须清楚导致错误的原因是,某些类型的模型要求某种类型的数据。这些工具根据特定要求处理这些列,并且还添加内容类型属性。因此,如果对完全不同的算法重复使用数据,则可能需要更改数据类型或内容类型。
2.数据挖掘中内容类型
我们现在给大家介绍一下数据挖掘中使用的内容类型,数据挖掘中使用的内容类型有离散、键、键序列、键时间。首先说一下离散,该列包含各值之间没有连续体的有限数量的值。例如,性别列是一个典型的离散属性列,这是因为该数据表示特定数量的类别。然后我们给大家说一下键,该列唯一标识某一行。通常,键列是数值或文本标识符,不应该用于分析,只应用于跟踪记录。时序键和序列键是例外。接着说一下键序列,该列包含表示事件序列的值。这些值是有序值,但不必按等差排列。键时间就是该列包含按顺序排列并表示时间刻度的值。仅当模型为时序模型或顺序分析和聚类分析模型时才能使用键时间内容类型。
在数据挖掘工作中我们需要重视的有预测模型的内容以及数据挖掘中使用的内容类型,大家在做数据挖掘工作的时候切莫忽视这两个细节,只有这样我们才能够处理好当下的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10