京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着信息化的不断发展,越来越多的人开始了解和学习大数据。但是大家在了解和想学习大数据的时候,一些需要解决的问题还是有很多的。比如大数据需要解决的关键问题,大数据如何走出实验室和工程化落地等,都是我们在了解和学习大数据时必须具备的知识。下面我们就来了解一下,对于大数据——哪些知识是需要学习和了解的。
就目前而言,大数据需要解决的关键问题就是数据、知识、服务、数据采集和管理,挖掘分析获取知识,知识规律进行应用转化为持续服务。只要我们解决好这三个问题,才算大数据应用落地,那么从学习角度讲,大数据学习特别要注重数据科学的实践应用能力,而且实践要重于理论。从模型,特征,误差,实验,测试到应用,每一步都要考虑是否能解决现实问题,模型是否具备可解释性,要勇于尝试和迭代,模型和软件包本身不是万能的。
我们还需要考虑大数据如何走出实验室和工程化落地,这就对我们有四点要求,一是不能闭门造车;二是要走出实验室充分与业界实际决策问题对接;三是关联关系和因果关系都不能少,不能描述因果关系的模型无助于解决现实问题;四是注重模型的迭代和产品化,持续升级和优化,解决新数据增量学习和模型动态调整的问题。所以,大数据学习一定要清楚我们是在做数据科学还是数据工程,各需要哪些方面的技术能力,现在处于哪一个阶段等,不然为了技术而技术,是难以学好和用好大数据的。
我们在学习大数据的时候,还是要注意几个关键的问题。
一:重视可视化和业务决策,大数据分析结果是为决策服务,而大数据决策的表现形式,可视化技术的优劣起决定性作用;
二:从整个大数据技术栈来考虑技术选型和技术路线的确定;
三:建模问题处于核心地位,模型的选择和评估至关重要。一般来说,在课堂和实验室中,多数模型的评估是静态的,少有考虑其运行速度、实时性及增量处理,因此多使用复杂的臃肿模型,其特征变量往往及其复杂。
四:开发语言的选择,基础框架系统Java是必须掌握的,应用级的机器学习和数据分析库Python是必须掌握的,而要深入各种框架和学习库的底层,这些都是我们需要注意到事情。
以上就是小编为大家介绍的关于大数据技术应用需要注意什么的具体内容,我们在学习和吸收的时候一定要认真对待、好好掌握。大数据分析师或数据分析师作为现在最受欢迎的一种职业之一,越来越受到大家的喜欢。我们在学习大数据的时候,一些需要注意的问题、一些需要解决的问题都是我们在学习的时候一定要好好掌握的。希望小编的文章能对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31