京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在学习机器学习的时候总会遇到很多的问题,而这些问题总是导致很多的问题,其实这些都是正常的,我们只有正视这些错误才能够更好地进行操控机器学习,而机器学习的常见错误有很多,我们在这篇文章中给大家介绍一下机器学习的常见错误,那就是只有模型没有系统。那么究竟是怎么一回事呢?下面我们就给大家介绍一下这个情况。
相信大家已经知道机器学习的核心知识吧,其实机器学习系统的核心是各种机器学习模型,但并不能说模型是系统的全部,甚至都不一定是系统中最重要的部分。如果把一个完整的机器学习系统比喻成一部手机,那么模型可以算作是手机的处理器,但是我们知道除了处理器以外,影响手机最终性能的因素还有非常的多,比如说屏幕,做工等等,而有了高端处理器并不能说明这是一款好手机。
当然,用这个比喻说机器学习也是一样的,要想让模型充分发挥作用,这就需要在系统构建时具有充分的大局观意识,把模型当做系统的一部分来看待。在这里需要提醒大家的是,在注意优化模型的同时,更要注意模型的提升是否对系统整体最终效果产生了提升,如果没有,那么要从系统中模型以外的部分找问题。而在所以在开发系统的过程中,不能只关注模型本身的好坏,更重要的是要关注模型对系统最终影响,以调优系统为目标,而不是仅仅调优模型为目标。如果只看到模型而看不到系统,很可能会做出指标漂亮但是没有实效的花瓶系统来。
当然,还有人在学习机器学习的时候忽视模型过程和细节。很多人觉得机器学习模型只需要把样本和特征放进去,就会有好用的模型参数生成,其实并不是这样的,如果这样想,会让人习惯性地忽略模型的细节,比如说某个参数为何是这个取值,这个取值是否合理,这个取值对应的样本数据是什么样子等问题,我们需要做的事情就是把精力都花在调一些外部参数之类的工作上。当然,如果硬要这样做的话,得到的后果就是如果模型效果不好,不一定能够通过调整外部参数来达到调优效果。在样本收集处理过程中,掺入了一些噪音数据没有去除,那么这些噪音数据会影响最终的模型参数,进而影响模型效果。这种问题通过调一些诸如正则化参数之类的参数是无法解决的,真正有效的解决方法是深入的具体参数中,找到表现异常的参数,然后深入到该参数对应的正负样本及其特征,这样逐层渗透地查找问题。典型的LR模型作为当今最流行的模型,很多人只看到了训练速度和扩展性这些优点,而没有充分利用模型简洁性这一特点。LR简洁的参数形式非常适合使用上面描述的问题查找方法来定位问题。
通过这篇文章相信大家已经知道了只有模型没有系统这一错误的来源了吧?大家在进行机器学习中一定要去避免这些问题,这样才能够更好地学习机器学习的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31