
我们在学习机器学习的时候总会遇到很多的问题,而这些问题总是导致很多的问题,其实这些都是正常的,我们只有正视这些错误才能够更好地进行操控机器学习,而机器学习的常见错误有很多,我们在这篇文章中给大家介绍一下机器学习的常见错误,那就是只有模型没有系统。那么究竟是怎么一回事呢?下面我们就给大家介绍一下这个情况。
相信大家已经知道机器学习的核心知识吧,其实机器学习系统的核心是各种机器学习模型,但并不能说模型是系统的全部,甚至都不一定是系统中最重要的部分。如果把一个完整的机器学习系统比喻成一部手机,那么模型可以算作是手机的处理器,但是我们知道除了处理器以外,影响手机最终性能的因素还有非常的多,比如说屏幕,做工等等,而有了高端处理器并不能说明这是一款好手机。
当然,用这个比喻说机器学习也是一样的,要想让模型充分发挥作用,这就需要在系统构建时具有充分的大局观意识,把模型当做系统的一部分来看待。在这里需要提醒大家的是,在注意优化模型的同时,更要注意模型的提升是否对系统整体最终效果产生了提升,如果没有,那么要从系统中模型以外的部分找问题。而在所以在开发系统的过程中,不能只关注模型本身的好坏,更重要的是要关注模型对系统最终影响,以调优系统为目标,而不是仅仅调优模型为目标。如果只看到模型而看不到系统,很可能会做出指标漂亮但是没有实效的花瓶系统来。
当然,还有人在学习机器学习的时候忽视模型过程和细节。很多人觉得机器学习模型只需要把样本和特征放进去,就会有好用的模型参数生成,其实并不是这样的,如果这样想,会让人习惯性地忽略模型的细节,比如说某个参数为何是这个取值,这个取值是否合理,这个取值对应的样本数据是什么样子等问题,我们需要做的事情就是把精力都花在调一些外部参数之类的工作上。当然,如果硬要这样做的话,得到的后果就是如果模型效果不好,不一定能够通过调整外部参数来达到调优效果。在样本收集处理过程中,掺入了一些噪音数据没有去除,那么这些噪音数据会影响最终的模型参数,进而影响模型效果。这种问题通过调一些诸如正则化参数之类的参数是无法解决的,真正有效的解决方法是深入的具体参数中,找到表现异常的参数,然后深入到该参数对应的正负样本及其特征,这样逐层渗透地查找问题。典型的LR模型作为当今最流行的模型,很多人只看到了训练速度和扩展性这些优点,而没有充分利用模型简洁性这一特点。LR简洁的参数形式非常适合使用上面描述的问题查找方法来定位问题。
通过这篇文章相信大家已经知道了只有模型没有系统这一错误的来源了吧?大家在进行机器学习中一定要去避免这些问题,这样才能够更好地学习机器学习的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15