京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在学习机器学习的时候总会遇到很多的问题,而这些问题总是导致很多的问题,其实这些都是正常的,我们只有正视这些错误才能够更好地进行操控机器学习,而机器学习的常见错误有很多,我们在这篇文章中给大家介绍一下机器学习的常见错误,那就是只有模型没有系统。那么究竟是怎么一回事呢?下面我们就给大家介绍一下这个情况。
相信大家已经知道机器学习的核心知识吧,其实机器学习系统的核心是各种机器学习模型,但并不能说模型是系统的全部,甚至都不一定是系统中最重要的部分。如果把一个完整的机器学习系统比喻成一部手机,那么模型可以算作是手机的处理器,但是我们知道除了处理器以外,影响手机最终性能的因素还有非常的多,比如说屏幕,做工等等,而有了高端处理器并不能说明这是一款好手机。
当然,用这个比喻说机器学习也是一样的,要想让模型充分发挥作用,这就需要在系统构建时具有充分的大局观意识,把模型当做系统的一部分来看待。在这里需要提醒大家的是,在注意优化模型的同时,更要注意模型的提升是否对系统整体最终效果产生了提升,如果没有,那么要从系统中模型以外的部分找问题。而在所以在开发系统的过程中,不能只关注模型本身的好坏,更重要的是要关注模型对系统最终影响,以调优系统为目标,而不是仅仅调优模型为目标。如果只看到模型而看不到系统,很可能会做出指标漂亮但是没有实效的花瓶系统来。
当然,还有人在学习机器学习的时候忽视模型过程和细节。很多人觉得机器学习模型只需要把样本和特征放进去,就会有好用的模型参数生成,其实并不是这样的,如果这样想,会让人习惯性地忽略模型的细节,比如说某个参数为何是这个取值,这个取值是否合理,这个取值对应的样本数据是什么样子等问题,我们需要做的事情就是把精力都花在调一些外部参数之类的工作上。当然,如果硬要这样做的话,得到的后果就是如果模型效果不好,不一定能够通过调整外部参数来达到调优效果。在样本收集处理过程中,掺入了一些噪音数据没有去除,那么这些噪音数据会影响最终的模型参数,进而影响模型效果。这种问题通过调一些诸如正则化参数之类的参数是无法解决的,真正有效的解决方法是深入的具体参数中,找到表现异常的参数,然后深入到该参数对应的正负样本及其特征,这样逐层渗透地查找问题。典型的LR模型作为当今最流行的模型,很多人只看到了训练速度和扩展性这些优点,而没有充分利用模型简洁性这一特点。LR简洁的参数形式非常适合使用上面描述的问题查找方法来定位问题。
通过这篇文章相信大家已经知道了只有模型没有系统这一错误的来源了吧?大家在进行机器学习中一定要去避免这些问题,这样才能够更好地学习机器学习的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31