京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家都知道,机器学习中有很多算法,比如说决策树,随机森林,线性回归等等,其实这些算法都是有很多优点,同时也是有很多的缺点。我们在这篇文章中给大家介绍一下ID3、C4.5算法、CART分类与回归树和Adaboosting算法的优缺点,希望这篇文章能够更好的帮助大家理解机器学习。
首先我们给大家介绍一下ID3、C4.5算法,其实ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有四方面,第一就是用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足。第二就是在树构造过程中进行剪枝。第三就是能处理非离散的数据。第四就是能处理不完整的数据。
那么这种算法的优点是什么呢?优点很明显,那就是产生的分类规则易于理解,准确率较高。而缺点就是在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。同时C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
那么什么是CART分类与回归树呢?其实这两种算法就是一种决策树分类方法,采用基于最小距离的基尼指数估计函数,用来决定由该子数据集生成的决策树的拓展形。如果目标变量是标称的,称为分类树;如果目标变量是连续的,称为回归树。分类树是使用树结构算法将数据分成离散类的方法。
这种算法的优点体现在两方面,第一就是这种算法非常灵活,可以允许有部分错分成本,还可指定先验概率分布,可使用自动的成本复杂性剪枝来得到归纳性更强的树。第二就是在面对诸如存在缺失值、变量数多等问题时CART显得非常稳健。
最后我们给大家介绍一下Adaboosting ,其实Adaboost是一种加和模型,每个模型都是基于上一次模型的错误率来建立的,过分关注分错的样本,而对正确分类的样本减少关注度,逐次迭代之后,可以得到一个相对较好的模型。该算法是一种典型的boosting算法,其加和理论的优势可以使用Hoeffding不等式得以解释。而这种算法的优点就是具有很高精度的特性。这种算法可以使用各种方法构建子分类器,Adaboost算法提供的是框架。同时,当使用简单分类器时,计算出的结果是可以理解的,并且弱分类器的构造极其简单。而简单也是其中一个特点,不用做特征筛选。最后就是不易发生overfitting。而缺点只有一个,那就是对outlier比较敏感。
在这篇文章中我们给大家介绍了关于机器学习算法的优缺点,具体就是ID3、C4.5算法、CART分类与回归树和Adaboosting算法,其实这些算法都是十分实用的,所以说我们在学习机器学习的时候一定不要忽视这些算法的学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31