
大家都知道,不管是什么学科都有很多陷阱,由于我们对这一知识的了解不够,就很容易掉进这个坑里,所以说我们一定要加强知识储备。而在机器学习中有很多前辈们总结下来的陷阱,在这篇文章中我们给大家介绍一下机器学习中常见的两个大坑,希望能够帮助的大家尽早脱坑。
首先我们给大家介绍一下第一个坑,那就是系统边界模糊和巨型系统。其实机器学习系统与其他软件系统相比,有一个显著的特点,那就是它是建立在实验性、探索性开发的基础上的。尤其是在初次搭建系统的时候,很难做到在完整设计的指导下开发,而大多是一边探索尝试一边开发,到最后达到上线要求的时候,系统也就随之成型了。不过这样构建出的系统,有个很大的问题,就是很容易做成一个边界模糊、模块耦合、结构复杂的“巨型系统”,这种系统的典型特征包括三点,第一就是模块间不可拆分,样本、特征、训练等步骤都偶合在一起。第二就是很多实验性、探索性代码遍布其中,搞不清楚哪些在用,哪些已失效。第三就是pipeline特别长,其中包括一些可能已经无用的流程。
那么为什么会出现这样的系统呢?重要原因之一就是前面提到过的,机器学习系统的探索式的本质。在刚开始做系统的时候,可能样本处理、特征处理这些都比较简单,所以就都写在了一起。随着各个流程处理的精细化、复杂化,每个步骤都在变复杂,但是由于这种变化是在慢慢发生的,导致系统慢慢变得不可控。
机器学习中第二个坑就是不重视基础数据架构建设,一般来说,数据是机器学习系统的核心,这里面包括各种样本数据,原始特征数据,处理后的特征数据,支撑数据等等,那么提供这些数据的系统和架构也是同样重要的,机器学习系统在构建初期,对待各种数据的态度往往是辅助性质的,认为这些数据只是为了模型服务的原料,而没有把它们本身作为严肃的子系统来对待,所以这些数据的架构往往缺乏设计,大多比较随意,可能会有很多难以复用代码。不过这容易导致出一个严肃而复杂的问题,这个问题不是一两个简单方法就可以解决的,而是需要从数据源开始做仔细的设计,设计时充分考虑数据可能的用法,并留有一定扩展性,保证数据的可用性和可探索性。
在这篇文章中我们给大家介绍了关于机器学习中容易存在的问题,其实这些问题都是值得我们关注的。所以说,我们在学习机器学习的时候一定要注意好这些问题,这样我们才能够更好解决其中的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15