京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家都知道,不管是什么学科都有很多陷阱,由于我们对这一知识的了解不够,就很容易掉进这个坑里,所以说我们一定要加强知识储备。而在机器学习中有很多前辈们总结下来的陷阱,在这篇文章中我们给大家介绍一下机器学习中常见的两个大坑,希望能够帮助的大家尽早脱坑。
首先我们给大家介绍一下第一个坑,那就是系统边界模糊和巨型系统。其实机器学习系统与其他软件系统相比,有一个显著的特点,那就是它是建立在实验性、探索性开发的基础上的。尤其是在初次搭建系统的时候,很难做到在完整设计的指导下开发,而大多是一边探索尝试一边开发,到最后达到上线要求的时候,系统也就随之成型了。不过这样构建出的系统,有个很大的问题,就是很容易做成一个边界模糊、模块耦合、结构复杂的“巨型系统”,这种系统的典型特征包括三点,第一就是模块间不可拆分,样本、特征、训练等步骤都偶合在一起。第二就是很多实验性、探索性代码遍布其中,搞不清楚哪些在用,哪些已失效。第三就是pipeline特别长,其中包括一些可能已经无用的流程。
那么为什么会出现这样的系统呢?重要原因之一就是前面提到过的,机器学习系统的探索式的本质。在刚开始做系统的时候,可能样本处理、特征处理这些都比较简单,所以就都写在了一起。随着各个流程处理的精细化、复杂化,每个步骤都在变复杂,但是由于这种变化是在慢慢发生的,导致系统慢慢变得不可控。
机器学习中第二个坑就是不重视基础数据架构建设,一般来说,数据是机器学习系统的核心,这里面包括各种样本数据,原始特征数据,处理后的特征数据,支撑数据等等,那么提供这些数据的系统和架构也是同样重要的,机器学习系统在构建初期,对待各种数据的态度往往是辅助性质的,认为这些数据只是为了模型服务的原料,而没有把它们本身作为严肃的子系统来对待,所以这些数据的架构往往缺乏设计,大多比较随意,可能会有很多难以复用代码。不过这容易导致出一个严肃而复杂的问题,这个问题不是一两个简单方法就可以解决的,而是需要从数据源开始做仔细的设计,设计时充分考虑数据可能的用法,并留有一定扩展性,保证数据的可用性和可探索性。
在这篇文章中我们给大家介绍了关于机器学习中容易存在的问题,其实这些问题都是值得我们关注的。所以说,我们在学习机器学习的时候一定要注意好这些问题,这样我们才能够更好解决其中的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31