京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们都知道,古今成大事者,都会经历三重境界,第一重境界是昨夜西风凋碧树,独上高楼,望尽天涯路。第二重境界是衣带渐宽终不悔,为伊消得人憔悴。第三重境界是众里寻他千百度,蓦然回首,那人却在灯火阑珊处。当然,在机器学习总也有三重境界,那么机器学习的三重境界是什么呢?下面我们就给大家详细解释一下。
机器学习的第一重境界就是能使用,也就是利用已知方法解决问题。具体来说就是给定一个模型,只要能够用它来根据给定的输入来求解输出,也就是利用已知的方法来解决问题。那么这个已知的方法,我们可以把它看成一个黑箱子,我不关注这个过程,不关注这个方法是如何解决问题,只要能够解决问题就行。可能已经有了一个算法,那么我们只需要对数据做一些处理,把这个数据送入到算法当中,得到一个输出,我们能看明白这个输出是怎么回事,这就可以。这是能使用的阶段,我们只是做一个算法的使用者,我能把它用清楚就够了。
机器学习的第二重境界就是能看懂,也就是理解已知方法的工作原理,在这一阶段中,我们不光用这个已知的方法来解决问题,同时我们还能够理解这个方法的工作原理。知道其中的现象,还能知道为什么这样。也就是知其然,并且能知其所以然。能使用就是知其然,能看懂就是知其所以然。那么这个方法可能背后有一些数学推导,会涉及到一些概率,最优化,还有线性代数的一些使用。那么这个能看懂,就要求我们具备相关的知识,能够把这个推导的过程给它顺下来,知道这个方法具体是怎么来工作。
机器学习的第三重境界就是能设计,具体就是根据问题特征开发新方法。如果在这个能看懂的基础上,再进一步的话,我们可以把它叫做能设计。我们把已知方法理解之后,我们还可以根据我的问题,根据我们的实际问题的特点,来开发一些新的方法。当然我们也可以对已有的方法进行改进,使它更符合我自己的一个待解决问题的方法,那么很显然,这个呢,对于数学功底就有更深层次的一个要求。
所以说,机器学习的三个境界就是能使用、能看懂、还能设计。在学习过程中,我们需要知道自己能够做到什么程度。当然,知识水平的掌握程度越高,能够解决问题的能力越高,所以说,我们要努力提高我们的机器学习的境界。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31