
数据清洗工作中面对的对象有三个——异常值,缺失值和重复值。而每个肮脏数据都是有各自的清洗方法,尤其是异常值的方法是最多的。由此可见,数据中的异常值是有很多的,在上一篇文章中我们给大家介绍了关于清洗异常值的一些方法,在这篇文章中我们会继续为大家介绍异常值的清洗。
第一我们给大家介绍的是基于模型检测,具体操作就是先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。而这个方法的优点就是有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效,当然,缺点就是对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。
第二就是基于距离检测,通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。这种方法的优点就是简单。缺点就是基于邻近度的方法需要O(m2)时间,大数据集不适用。当然该方法对参数的选择也是敏感的。同时不能处理具有不同密度区域的数据集,因为它使用全局阈值,不能考虑这种密度的变化。
第三就就是基于密度,当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。适合非均匀分布的数据。这种方法的优点就是给出了对象是离群点的定量度量,并且即使数据具有不同的区域也能够很好的处理,同时与基于距离的方法一样,这些方法必然具有O(m2)的时间复杂度。对于低维数据使用特定的数据结构可以达到O(mlogm)。而缺点就是参数选择困难。虽然算法通过观察不同的k值,取得最大离群点得分来处理该问题,但是,仍然需要选择这些值的上下界。
最后就是基于聚类,一个对象是基于聚类的离群点,如果该对象不强属于任何簇。离群点对初始聚类的影响如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。优点就是基于线性和接近线性复杂度(k均值)的聚类技术来发现离群点可能是高度有效的,而簇的定义通常是离群点的补,因此可能同时发现簇和离群点。缺点就是产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据中离群点的存在性。同时聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。
在这篇文章中我们给大家介绍了关于数据清洗的剩余一部分知识,通过对这些知识的了解可以帮助我们更好地理解数据分析工作。希望大家通过对这些数据分析清洗方法的学习,可以在工作时更加得心应手,也算是提升个人的职场竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29