京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多技术都涉及到了不少工具,数据分析也不例外。数据分析中的数据可视化也是有很多的工具支撑的,大家可能普遍认为只要学会了Excel、Photoshop就可以了,其实并不是这样的。数据可视化有很多的工具可以给我们的工作和展示起到如虎添翼的效果。我们在这篇文章中就给大家介绍一下数据可视化中经常用到的工具。
首先我们说的是echarts。很多人认为echarts识百度为数不多的良心产品,其实这种硕大是正确的,一般来说,这个库跟d3相反(d3我们在后面会讲到),它离应用层更近,提供了许多示例模板,把代码复制粘贴过去然后对数据进行更改即可。所以echarts的优点就很明显了,具体来说就是上手容易、图表漂亮、交互式效果也很好。但是缺点自由度低,也让很多人无语。
然后我们给大家介绍一下Excel,随着Excel的发展,它的图表也越来越丰富美观,很容易上手,仍然是把数据往模板里套的方式。Excel大家都很熟悉,在这里就不赘述了。
下面我们就给大家介绍一下PS和AI,这两个工具大家都可能是比较熟悉的,因为这是设计师的工具,但是出了一张可视化的图之后往往需要进一步修缮,这就是设计师的工作了。可以生成一张pdf矢量图,然后导入PS或AI中,这样对每一个元素操作都很方便。
而DataV很适合做大屏可视化展示,效果很炫酷,而且模板越来越成熟,上手难度也越来越低,同时价格也不贵。受到了大家的好评。很多人想不明白一个问,那就是数据可视化到底是否需要编程?对于大数据量、自由度要求较高、创意设计强的可视化应当要编程,但是对于日常小规模、简化、通用的可视化,用工具即可。而且随着数据可视化技术的发展,它的门槛一定是越来越低,越来越不需要编程也能做出很好的可视化效果。
接着我们给大家说一下ggplot2。这是因为R最擅长的除了统计建模就是可视化了,而ggplot2是最流行、最强大的绘图包。对于静态图,只要我们有足够的创意,ggplot2基本都可以通过其系统完备的画图语法实现。而R中也有相关的包可以把ggplo2图形变成交互式,弥补了ggplot2本身不能交互的弱点。这解决了很多的问题。
最后我们说一下d3,d3个很强大的库,许多先进、前卫的图形在上面都有demo,它可以在较底层以较高的自由度画图并配置交互效果。但是它的学习曲线很陡,陷阱也有很多。所以大家一定要重视这个工具的学习。
关于数据可视化常用工具的内容我们就给大家介绍到这里了,大家在进行数据可视化的时候一定要掌握好这些工具的用法。只有熟练的使用这些工具,我们才能够做好数据可视化这份工作,为自己的工作生涯增添光彩。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27