京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近几年随着行业竞争力度的加大,数据分析师成为了热门职业,越来越抢手,毕竟企业的前进方向、行业的现状等都是需要数据分析师对其搜集到的各方数据进行处理、分析后才能发挥应有的价值。对于以成为一名数据分析师为目标的人来说,需要对数据分析工作有一定的了解。那么数据分析工作都包括哪些环节呢?
1.数据分析工作环节之明确目的
在工作的最开始,我们需要首先明确工作的根本目的,比如最近发现公司的业务量迅速减少,其中的原因有哪些;行业的当前现在如何,适合选择哪种发展方向等等,这样才能够展开之后的工作。作为数据分析师,需要根据自己对业务流程的理解确定数据维度,包括拉去哪些数据、重要变量以及引发变量的外界因素等。如果对业务流程不甚理解或是有存在疑惑的地方的时候,一定要找专业人事针对业务逻辑进行学习。
2.数据分析工作环节之数据拉取
当明确工作目的后,可以着手做数据的拉取或罗列了。数据分析过程中的数据拉取一般都要数据处理人员自己动手拉取,并从中筛选到多个相关数据。在拉取数据的过程中需要确定几个要点,包括在数据库里拉取数据语句最好要完整、对数据的限制条件要准确、拉取数据的逻辑要合理,以及保证数据受外因影响最小性。
3.数据分析工作环节之数据处理
数据成功拉取后需要进行数据处理工作。数据处理不是一个简单的整理和罗列过程,需要数据分析人员在拉取的数据中,利用常用函数筛选认为有用的语句和信息。数据处理过程虽然是一个繁琐枯燥的过程,但其中又充满了刺激和乐趣,因为在数据处理的过程,我们会发现好多有趣的、与众不同的数据,而这些和平常数据不一样的数据很可能正是我们所需要的。
4.数据分析工作环节之数据分析
在对所有的数据进行处理分析后,通常我们可以得到一个具体业务的结论,不过这并不代表着数据分析工作的完成,我们还需要进行必要的结论验证。其实结论验证并不难,最简单、最直接的方式就是通过其他的维度来验证该结论的可行性和可靠性,然后以清晰、明确的方式提供给用户或是企业决策人。
对于一家企业或公司而言,数据分析是持续前进、顺利发展的保障之一。作为数据分析师,不仅要具备必须的职业技能,还要对自己的工作环节有足够的了解,这样才能够保证工作的顺利进行。以上分四点为大家介绍了数据分析工作的各个环节,大家可以以此作为参考,逐步提高自己的数据分析能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12