京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当我们要学习人工智能的时候,我们需要学习很多的知识,比如机器学习、深度学习等。一般来说,机器学习是人工智能的核心知识,要想学好人工智能就必须重视机器学习的知识。在这篇文章中我们给大家介绍一下关于机器学习需要了解的知识。
当然,说到机器学习就必须要说一下机器学习算法,在机器学习算法中,尤其是神经网络被认为是新的人工智能革命的起因。而机器学习中涉及到了增强学习,那么什么是增强学习呢?数据驱动算法可以分为三类:监督式、非监督式和增强学习。监督式学习和非监督式学习通常用于执行诸如图像分类、检测等任务,虽然它们的精确度是显著的,但这些任务不同于我们所期望的智能。而这些就是增强学习的来源。而增强学习的原理还是很简单的,环境给agent一个正确的东西给予奖励,并且对于错误的东西来惩罚它。
下面我们就给大家介绍一下增强学习中的算法,有两种应用广泛的增强学习算法,分别是Q Learning和Deep Q Learning,其中Q Learning是一种应用广泛的增强学习算法。如果不进行详细的数学运算,给定的动作质量取决于agent处于什么状态。agent通常执行给予最大回报的操作。当然,在这个算法中,agent根据环境给予多少回报来学习每个动作的质量。每个环境的状态值以及Q值通常存储在表中。当agent与环境交互时,Q值从随机值更新到实际上有助于最大化回报的值。而Deep Q Learning则是Q Learning的拓展,这是因为Q Learning的使用表的问题在于它不能很好地扩展。如果状态数太高,该表将不适合于内存。这就是Deep Q Learning可以应用的地方。深度学习基本上是一种通用的近似机器,它能理解抽象的表示。深度学习可以用来近似Q值,也可以通过梯度下降学习Q值。
在增强学习中,在训练数据的情况下总会有经验回放,这是因为在训练神经网络时,数据不平衡起着非常重要的作用。如果一个模型被训练,当agent与环境交互时,就会出现不平衡。所以,所有状态以及相关数据都存储在内存中,神经网络可以随机选取一批交互和学习。
那么增强学习有什么延伸的方面呢?其实增强学习有很多的功能,能很好地处理许多事情,但是在反馈稀疏的地方通常会失败。agent不会长期探索实际有益的行为。有时,为了自身的缘故而不是直接尝试解决问题,需要采取一些行动。因为这样做可以让agent执行复杂的操作,基本上允许agent计划事情。在这种设置中,有两个Q网络。它们被表示为控制器和元控制器。 元控制器查看原始状态并计算要遵循的目标。 控制器与目标一起进入状态,并输出策略来解决目标。检查是否达成目标,并向控制器给予回报。 当片段结束或达到目标时,控制器停止。然后,元控制器选择一个新目标,并重复这个目标。
在这篇文章中我们简单给大家介绍了关于机器学习需要了解的知识,具体的内容就是关于增强学习的一些知识。通过这些内容我们可以更深入地了解深度学习的知识,希望这篇文章能够更好地帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12