
当我们要学习人工智能的时候,我们需要学习很多的知识,比如机器学习、深度学习等。一般来说,机器学习是人工智能的核心知识,要想学好人工智能就必须重视机器学习的知识。在这篇文章中我们给大家介绍一下关于机器学习需要了解的知识。
当然,说到机器学习就必须要说一下机器学习算法,在机器学习算法中,尤其是神经网络被认为是新的人工智能革命的起因。而机器学习中涉及到了增强学习,那么什么是增强学习呢?数据驱动算法可以分为三类:监督式、非监督式和增强学习。监督式学习和非监督式学习通常用于执行诸如图像分类、检测等任务,虽然它们的精确度是显著的,但这些任务不同于我们所期望的智能。而这些就是增强学习的来源。而增强学习的原理还是很简单的,环境给agent一个正确的东西给予奖励,并且对于错误的东西来惩罚它。
下面我们就给大家介绍一下增强学习中的算法,有两种应用广泛的增强学习算法,分别是Q Learning和Deep Q Learning,其中Q Learning是一种应用广泛的增强学习算法。如果不进行详细的数学运算,给定的动作质量取决于agent处于什么状态。agent通常执行给予最大回报的操作。当然,在这个算法中,agent根据环境给予多少回报来学习每个动作的质量。每个环境的状态值以及Q值通常存储在表中。当agent与环境交互时,Q值从随机值更新到实际上有助于最大化回报的值。而Deep Q Learning则是Q Learning的拓展,这是因为Q Learning的使用表的问题在于它不能很好地扩展。如果状态数太高,该表将不适合于内存。这就是Deep Q Learning可以应用的地方。深度学习基本上是一种通用的近似机器,它能理解抽象的表示。深度学习可以用来近似Q值,也可以通过梯度下降学习Q值。
在增强学习中,在训练数据的情况下总会有经验回放,这是因为在训练神经网络时,数据不平衡起着非常重要的作用。如果一个模型被训练,当agent与环境交互时,就会出现不平衡。所以,所有状态以及相关数据都存储在内存中,神经网络可以随机选取一批交互和学习。
那么增强学习有什么延伸的方面呢?其实增强学习有很多的功能,能很好地处理许多事情,但是在反馈稀疏的地方通常会失败。agent不会长期探索实际有益的行为。有时,为了自身的缘故而不是直接尝试解决问题,需要采取一些行动。因为这样做可以让agent执行复杂的操作,基本上允许agent计划事情。在这种设置中,有两个Q网络。它们被表示为控制器和元控制器。 元控制器查看原始状态并计算要遵循的目标。 控制器与目标一起进入状态,并输出策略来解决目标。检查是否达成目标,并向控制器给予回报。 当片段结束或达到目标时,控制器停止。然后,元控制器选择一个新目标,并重复这个目标。
在这篇文章中我们简单给大家介绍了关于机器学习需要了解的知识,具体的内容就是关于增强学习的一些知识。通过这些内容我们可以更深入地了解深度学习的知识,希望这篇文章能够更好地帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15