
很多人都开始学习编程,毕竟编程的工作能够获得高薪,而现在十分流行一种语言,那就是Python。Python是一门十分实用的编程语言,在大数据、人工智能以及数据分析中有广泛的应用。Python的优点也十分突出,比如上手简单,代码简洁、高效,已经成为很多学术科研人士和普通爱好者的数据分析工具,那么数据分析师为什么要学习Python呢?下面我们就给大家介绍一下这些内容。
获取数据是数据分析的第一步,没有数据那么数据分析的工作就毫无意义。当然,我们获取数据的方式有很多,但是最好的方式就是使用Python,Python凭借它强大的功能可以帮助我们获取数据。当然,像Java等语言也可以实现爬虫功能,但Python实现起来是比较简单的。并且Java的学习成本太大, 而Python是十分简单的,下面我们就来看一看Python的数据分析功能。
那么Python的使用范围是什么呢?其实python为使用者提供了一系列的数据分析包,经常用到的分析报包括Numpy以及pandas;此外还为使用者提供了一些操作大型数据集所需的高效使用工具。一般的企业处理的数据量其实也就是在几万到几十万之间,向规模更加巨大的数据一般人可能很少有机会处理大规模的数据。但是对于几万、几十万条数据的处理,可能恰恰是目前乃至今后中小型企业、研究机构的数据处理常态,在这样的数据规模面前,Excel会卡顿到让人想砸电脑,而SPSS、R等专业统计软件虽然相对好一些,但一般人并不会使用。在这种情况下,Python提供了一个绝佳的选择。
Python的优势是十分出色的,尤其是在数据清洗方面,得到了数据分析师的好评,首先就是在数据清洗方面,Python不仅使用灵活简便而且效率高,相比传统统计软件有很大优势。而有经验的数据分析师都知道,数据清洗在整个数据分析项目中几乎是最耗时的。然后就是可复用性,程序具有良好的可复用性,一次编写,下次就可以直接运行,可以大大减少重复工作量。当然,与其他数据源链接的能力,Python可以方便地连接互联网去发送/提取数据,也能从几乎所有存储格式文档中存取数据,包括文本文档、Excel、图片及各类SQL数据库。这样数据分析师就可以不依赖于其他人提供的特定格式数据,从而极大地提升数据使用能力。最后就是Python良好的可扩展性。Python有从小数据到大数据的处理能力,其数据分析之外的功能也很强大,我们学习了绝对没有坏处的。
关于数据分析行业一定得学习Python的原因我们就给大家介绍到这里了,我们不难发现Python的确是一个十分实用的技能。所以说,能够熟练地利用Python能够帮助大家更好进行数据分析工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10