
现如今,数据分析中有很多的工具都是十分实用的。由于大数据的发展越来越好,使得使用了大数据分析的企业已经朝着更好的方向发展。正是因为这个原因,数据分析行业的人才也开始变得火热起来,尤其是高端人才,越来越稀缺。当然,对于数据分析这个工作,的确是需要学会一些编程语言的,比如MATLAB,Python,Java等语言。但是对于初学者来说,Python是一个不错的语言,Python语言简单易懂,同时对于大数据分析有很明显的帮助。那么数据分析为什么要使用Python呢?这是因为Python有很多优点,那么优点都是什么呢?下面我们就给大家介绍一下这些优点。
首先说说Python的第一个优点,那就是Python在数据分析和交互、探索性计算以及数据可视化等方面都显得比较活跃,这就是Python作为数据分析的原因之一,python拥有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科学计算方面十分有优势,尤其是pandas,在处理中型数据方面可以说有着无与伦比的优势,已经成为数据分析中流砥柱的分析工具。
Python最大的优点那就是简单易学。很多学过Java的朋友都知道,Python语法简单的多,代码十分容易被读写,最适合刚刚入门的朋友去学习。我们在处理数据的时候,一般都希望数据能够转化成可运算的数字形式,这样,不管是没学过编程的人还是学过编程的人都能够看懂这个数据。
当然,Python也具有强大的编程能力,这种编程语言不同于R或者matlab,python有些非常强大的数据分析能力,并且还可以利用Python进行爬虫,写游戏,以及自动化运维,在这些领域中有着很广泛的应用,这些优点就使得一种技术去解决所有的业务服务问题,这就充分的体现的Python有利于各个业务之间的融合。如果使用Python,能够大大的提高数据分析的效率。
其实现如今,Python是一个面向世界的编程语言,Python对于如今火热的人工智能也有一定的帮助,这是因为人工智能需要的是即时性,而Python是一种非常简洁的语言,同时有着丰富的数据库以及活跃的社区,这样就能够轻松的提取数据,从而为人工智能做出优质的服务。
通过上面的描述,相信大家已经知道了使用Python做数据分析的优点了。Python语言得益于它的简单方便,使得其在大数据、数据分析以及人工智能方面都有十分明显的存在感,对于数据分析从业者以及想要进入数据分析行业的人来说,简单易学容易上手的优势也是一个优势,所以不管大家是否进入数据分析行业,学习Python是没有坏处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15