
数据分析中有很多常见的错误,我们在上一篇文章中给大家介绍了很多数据分析的错误。通过对这些错误的介绍,我们可以看出,如果对这些错误置之不理的话就会引发很严重的后果。我们在这篇文章中给大家介绍出更多关于数据分析中常见的错误,希望这篇文章能够更好地帮助大家理解数据分析。
首先就是测量误差,当我们捕获数据的软件或硬件出错时,或无法捕获可用数据或产生虚假数据时,就会出现测量错误。例如,使用日志与服务器不同步,则可能丢失移动应用程序上的用户行为信息。同样,如果我们使用像麦克风这样的硬件传感器,我们的录音可能会捕捉到背景噪音或其他电信号的干扰。
然后就是加工误差。许多企业拥有几十年前的数据,原来能够解释数据决策的团队早已不在了。他们的许多假设和问题很可能没有文档化,这将取决于我们推断,这可能是一项艰巨的任务。我们的团队可能会做出与原始数据收集过程中不同的假设,并得出截然不同的结果。常见的错误包括缺少一个特定的过滤器,使用不同的会计标准,并简单地犯方法错误。
当然,数据分析中常见的错误有覆盖误差。那么什么是覆盖误差,这种误差是指目标受访者都没有足够的机会参与数据调查的情况。例如,如果我们正在收集老年人的数据,但只提供网站调查,那么我们可能会错过许多答卷人。
接着就是抽样误差。当我们分析一个较小的样本时,就会发生抽样误差。当数据只存在于某个群体中时,这是不可避免的。结论就是我们得出的代表性样本可能不适用于整体。
推理错误就是当统计和机器学习模型从已有数据中做出不准确的判断后,它们之后的推理结果也可能是错误的。如果我们有一个非常干净的“地面真实”数据库,那么就可以用它去检测数据模型得出的推理是否正确,但实际上,大多数数据库是充满噪音的,所以我们通常很难确定AI推论的错误点在哪里。
未知错误也是其中一个不能忽视的错误,现实是难以捉摸的,我们不能总是轻易地建立事实。在许多情况下,比如使用数字产品,我们可以捕获大量用户在平台上的行为数据,而不是他们对这些行为的动机。除了已知的许多类型的错误之外,还有一些未知,它们在以数据代表的现实和现实本身之间留下了一个缺口。
一般来说,没有数据科学或机器学习经验的管理人员通常会犯这九大错误,所以从事数据分析行业或人工智能领域的朋友一定要多加注意了,只有学会了这些知识,我们才能再职场上更好地立足并站稳脚跟,不被别人找到把柄,更不被自己的粗心拖累。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15