京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在有很多的行业都是使用到了大数据技术,如果我们说大数据的应用场景是一个相对比较简单的问题,那关于大数据的分布式数据库应用场景是什么就不是一个简单的问题了。其实在不同的应用场景中都有不同的技术,现阶段并没有任何一种技术可以适用于全部业务场景。那么大数据的分布式数据库应用场景是什么呢?下面我们就给大家解答一下这个问题。
大数据时代,有很多行业中的核心是交易类业务,由于一些历史原因,很少有企业能够做到立刻使用新技术替换主核心系统。但是在其他的系统中,分布式数据库可以做到这些,同时在大数据应用中,分布式数据库地位也不断上升。而数据仓库延展实际上就是对传统数仓模型的一个补充。一直以来,数据仓库的建设都是遵从着从顶向下的原则,也就是先建立数据模型,再根据数据模型构建表结构与SQL,之后进行ETL和数据清洗,最后得到相应的报表。
而大数据与新兴的机器学习,带给人们另一种从底向上的分析思路:首先建立分析型数据湖,将需要分析的数据均纳入湖中进行脱敏和标准化,之后利用机器学习、深度挖掘等分布式计算技术,在这些海量的数据中寻找规律。这种思路与传统数仓思路的最大不同,在于以历史数据展现出的事实为基础构建分析模型,而非与假设出的数据模型为基础进行构建。数据仓库延展,是Hadoop与分布式列存储的主打场景。对于在线和实时数据操作,分布式数据库则是另一个主要的技术类型。但在大数据的场景中,很多业务开始对历史数据的在线交互式访问提出明确的更高需求。这些类型的应用场景存在并发量高、索引维度多、查询延迟低等特性,使用Hadoop的HBase存在众多不便,正是分布式联机数据库的主要应用场景。除了存放历史数据以外,ODS延展的另一大方向就是作为数据集市,存放从Hadoop中分析和挖掘的结果,供外部应用调用查询。例如,手机银行根据每个用户画像的标签结果与当前行为提供实时产品推荐,就是将分析结果与实时行为数据相结合的场景。这类应用可以进一步扩展到事中风控等更核心的业务场景中去。
因此,在大数据时代中,Hadoop与分布式数据库在金融行业的架构中应当相辅相成,互相弥补各自的不足。Hadoop与分布式分析型数据库在结构化数据批处理分析中都可以很好地满足需求;Hadoop对于非结构化数据分析有着数据库无法比拟的优势;而分布式联机数据库则在高并发在线业务场景中能够更灵活地管理和使用数据。
在这篇文章中我们给大家介绍了很多有关大数据的分布式数据库应用场景知识,通过这些我们不难发现大数据的分布式数据库是一个十分实用的工具。所以学习大数据就一定不能忽视这个技能的学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06