
在人工智能中,有两个十分重要的内容,第一就是机器学习,第二就是深度学习。正是由于机器学习与深度学习,人工智能才能够帮助我们做出更多的事情。其实,深度学习也是有分类的。深度学习可以分为两种,一种是强化学习,另一种则是对抗学习。在这篇文章中我们就简单为大家介绍一下强化学习和对抗学习的知识。
其实强化学习和对抗学习,相对来说,都是深度学习比较前沿的部分。一般来说,强化学习是人工智能在训练中得到策略的训练过程,强化学习强调的是一个过程,而不同于上述各种神经网络强调的是搭建模型的方式。可能会有朋友问,强化学习要解决的问题是什么?说到这里我们就不得不提一下神经网络,神经网络大部分是在完成分类问题,判断样本标签类别等,机器做到更智能表现就是因为强化学习,强化学习就作为一种机器自学习的状态,来解决上面神经网络相对来说需干预才可学习的局限。比如在阿尔法狗围棋学习中,就会用到强化学习这样的自学习过程。
那么强化学习的模型核心是什么呢?其实强化学习要做的主要有两步,第一就是将奖励、损失定义好。第二就是以主体较低成本不断尝试,总结不同状态下,奖励大的工作方式。
下面我们就给大家介绍一下对抗学习的知识,目前的对抗学习主要是指生成对抗网络。对抗网络是通过模拟一种数据概率分布的生成器,使得概率分布与观测数据的概率统计分布一致或者尽可能接近。这个过程涉及纳什均衡中的博弈机制,具体包括在训练中,判别模型尽可能提取特征正确率增加的模型,生成模型尽可能“伪造”让判别模型以为是真的结果。其他,还有相对更前沿的,包括条件生成对抗网络(CGAN)、深度卷积对抗网络(DCGAN)等等。这些前沿方向,对应解决的,包括对抗学习稳定性不高、训练数据还原度及质量水平等问题。这些就是对抗学习的内容。
在这篇文章中我们给大家介绍了很多有关于深度学习的内容,具体的内容就是给大家介绍的强化学习和对抗学习的知识。当然,这些都是深度学习中的前沿知识,要想学习得更加深入和熟练,真的就得一步一个脚印地好好掌握。希望这篇文章能够帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14