京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据中的数据分析中,我们可以通过数据分析进行预测分析,预测分析的价值就在于成功与快速。如果预测不成功,那么这个分析工作没有任何意义,而如果预测时间过长,那么也没有了意义。所以我们最重要的就是预测成功,然后再慢慢地提高预测效率,那么预测分析有什么秘诀呢?我们在这篇文章中给大家详细地说一说。
首先说说我们为什么要预测,预测未来一直是一个非常具有挑战性的命题。但是预测分析技术的出现使得用户能够基于历史数据和分析技术预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。由此可见,我们的预测工作并不是没有意义的。但是,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。而预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。所以我们必须发展数据分析预测。
其实大数据的数据分析预测是有秘诀的,主要是有七点,我们在这篇文章中慢慢的给大家说一下。首先就是能够访问质量高的数据以及容易理解的数据。预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。 我们应该知道,数据和预测分析之间是相互促进的关系。所以了解流入预测分析模型的数据类型非常重要。为了做出准确的预测,我们预测的模型需要被设计成能够处理它所吸收的特定类型的数据。如果简单地将大量数据扔向计算资源的预测建模工作注定会失败。这是因为由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。
我们在这篇文章中给大家说了大数据的数据分析预测秘诀的内容,由于篇幅原因我们就给大家说了其中的一个秘诀,大家可以持续关注我们,我们会在下一篇文章中继续给大家说一说其他的秘诀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29