京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人们对人工智能的了解不够,导致人们对人工智能存在一定的误解,也导致了人们对人工智能的恐慌,这些都是没有必要的。只要我们真正了解了人工智能,我们就能够掌握人工智能的方法,这样可以使得人工智能更好地为我们服务。下面我们继续给大家介绍人们对人工智能存在的误解。
第三个误解,就是有的人认为我们不应该害怕人工智能。Facebook创始人扎克伯格认为我们不应害怕人工智能,因为人工智能将会为世界创造很多令人惊异的好东西。其实他只对了一半。我们安然享受人工智能所能创造的巨大的好处,比如从无人驾驶汽车到新药的制造,然而我们却无法保证所有通过人工智能所实现的将会是良性的。有很多的害处我们现在还无法发现。现阶段的人工智能的表现就是一个高度智慧的系统,一个高度智慧的系统也许能了解完成一个特定任务所需要的所有知识,但除开这些它所专长的特定的领域外,它很可能非常无知和愚昧。比如阿尔法狗精通于围棋,然而除了围棋,它对于其他领域却没有任何推理和逻辑能力。当然,还有很多的系统缺乏深入的安全考虑。
第四个误解,就是认为人工智能由于其极高智能,将不会犯任何错误。显然这是错误的。虽然人工智能是非常智能的,但是人工智能也是由程序组成的,如果是某方面引起的故障的话,那么人工智能可能会产生自相矛盾的逻辑,面临无数自相矛盾的逻辑推理,也因此会干扰了其认知从而变得非常愚蠢,而同时根本不足以对我们造成伤害。而科学家们认为人工智能将很大程度上依赖其程序锁定。他们不相信人工智能不会犯错误,或者反过来他们没有聪明到可以理解我们希望他们能做什么。人工智能就是一个在方方面面都比最聪明的人脑要更为聪明的智慧载体。在未来人工智能将会完全知道我们设计他们来做什么。科学家相信人工智能将只会做其程序编写的任务,但如果它足够聪明的话,它会最终理解法律的精髓和人文的意义。
在这篇文章中我们给大家介绍了两种人们对人工智能的误解,分别是认为我们不应该害怕人工智能以及人工智能由于极高智能因此不会犯任何错误。在下一篇文章中我们继续为大家介绍更多的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03