京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在上一篇文章中给大家介绍了大数据是如何帮助人工智能的这一个问题,由此可见人工智能是离不开大数据的。当然,这些能够帮助我们对人工智能有了进一步的了解,下面我们继续给大家介绍人工智能相关的问题。
我们在这篇文章给大家介绍的问题就是:深度学习的深是什么?而深度学习的浅层次东西是什么呢?一般来说,深度学习的核心理论还是基于浅层神经网络的堆叠,核心技术本身并无新意,科学家对深度学习也只是做了有限的改造和提升。另外,伟大的东西往往很简单,所以说,深度学习是一种朴素、简单、优美而有效的方法。通过构建网络结构,如果出现性能不够的情况,那么加层来凑的朴素思想,这种标准化、易用性的处理架构,极大降低了机器学习的难度,当然最关键还是应用效果。从这个角度理解,深度学习并无深意,只是对传统浅层神经网络做了少量改造。所以这就是深度学习浅层次的东西。
而深度学习总的深是什么呢?深度学习绝不只是几个具体算法、模型那么简单,而是一种仿人脑多层异构神经元连接网络的机器学习思想、方法论和技术框架,这种框架可能会从传统机器学习学科中分离出来,传统浅层学习模型的深度化是一大研究趋势。各类深度学习网络的变异、进化、融合,结合GPU超级计算将是未来现实大数据条件下大规模机器学习的重要方向,特别是海量多模态大数据条件下的机器学习,没有深度架构只靠浅层学习,将无法支撑大数据条件下自动特征学习、模型的有效表达和记忆存储。尽管深度学习的能力相比传统机器学习技术很强,但和真正的人工智能目标相比,仍然缺乏诸多重要的能力,如复杂的逻辑推理、知识抽象、情感经验、记忆和表达等。不过深度学习发展现在还处于初级阶段,能否真正实现类脑计算解码还需要时日加以验证。我们希望这些技术能够尽快实现。
我们在这篇文章中给大家介绍的人工智能中的深度学习的知识,这些知识都能够帮助我们更好地了解人工智能,在后面的文章中我们继续给大家介绍人工智能的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28