京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能的出现方便了我们大众的生活,自从出现了人工智能以后,人工智能得到了大家的关注以及各个行业的支持。人工智能就是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。但人工智能现在也是存在了很多的问题,具体问题都有哪些呢?现阶段,人工智能存在着十个问题,下面我们就给大家介绍一下这个问题。
首先给大家介绍一下人工智能存在的第一个问题,那就是人工智能的模型甚至可能起作用,但往往是出于错误的原因。深度学习就是一个很好的例子。深度学习显然已经解决了物体识别问题,但是大量研究表明,深度神经网络能识别物体的原因与人类能观察到物体的原因大不相同。对于用图灵测试精神欺骗人类的人来说,这可能并不重要。但对于关注人工智能体处理非预期现实的能力的人来说,这是至关重要的。所以解决这个问题是至关重要的事情。
其次,人工智能在现实中不是游戏,智能是一种机制,它会进化以令智能体能够解决问题。由于智能是一种辅助我们玩规则不断变化的游戏的机制,因此很可能成为一种副作用,它能让我们玩有一套固定规则的实际游戏也就不足为奇了。构建在玩固定规则游戏时胜过人类能力的机器,跟构建一个能够玩规则不断变化的游戏的系统差得远了。所以这就需要我们重视人工智能。
第三个人工智能中存在的问题就是物理现实中有一些规则是不变的,也就是物理定律。我们用语言描述他们,并利用它们来做预测,从而建立文明。但是为了在这个物理环境中行动,这个星球上的每一种生物体都掌握了这些定律,并不需要语言。
第四个问题就是我们的视觉统计模型其实是非常不足的,因为它们仅依赖于某一时间的事物和人类指定的抽象标签进行识别。举一个例子,那就是深度神经网络能够看到数以百万计的苹果挂在树上的图像,但永远不可能发现万有引力定律。
我们在这篇文章中给大家介绍了很多关于人工智能会出现的问题,只有认清楚这些问题,我们才能更好地利用人工智能,在下一篇文章中我们继续给大家介绍人工智能存在的其他问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31