京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现阶段人工智能能够给我们带来很大的帮助,也正因为如此,人工智能受到了大家的关注。凡事必有两面,人工智能在受到极大追捧的同时也面临着很严峻的考验。我们在上一篇提到了一部分内容,下面我们继续为大家讲讲现阶段人工智能面临的考验还有哪些。
人工智能面临的考验具体就是人才问题,人工智能离不开人才的培养,现在人工智能领域的理论掌握在顶尖教授手上,但应用的数据在公司手上。顶尖教授一般会有与同行进行交流、发表研究成果的诉求,但公司的研发却要求不能透露商业核心秘密,甚至要将这个科学家雪藏起来,比如苹果现在人工智能的领导者是谁,我们都还不知道。这里面存在天然的冲突,很可能成为制约人工智能发展的瓶颈。如果我们获得不少的人才,那么我们才能够做好人工智能的工作,才能够让人工智能更好的为我们服务。
而人工智能还面临着资本化的问题,这是因为人工智能是巨头公司的天下,所以公司被并购是许多初创公司的宿命。当前,谷歌、IBM、雅虎、英特尔、苹果、Salesforce以及国内的百度、阿里等互联网科技巨头公司布局势头「凶猛」,引发了一场全球范围内的人工智能投资收购热潮。而到目前为止拿到融资的人工智能创业公司里面有近一半都被收购了,其中前两年就有40家。主力买主是谷歌、Twitter、IBM、雅虎、英特尔和苹果,谷歌以11次收购的成绩位列榜首。然而,一些巨头公司在并购人工智能初创公司的时候却面临着重重问题。解决这些问题还是需要考虑很多的细节。所以,这就需要上市公司或产业基金布局海外市场都需要考虑落地问题,这时候沟通成本、管理成本、人员适应本地化成本便会增加。因此,如何降低成本成为布局海外市场的一大难题。解决了这个难题我们才能够更好的发展人工智能。
在这篇文章中我们给大家介绍了现阶段人工智能所面临的问题之人才问题和资本化问题,这些问题是阻碍人工智能发展的绊脚石,我们唯有尽快解决这些问题,才能够更好地推进人工智能的发展和进步。由于篇幅原因我们就给大家介绍这么多了,我们在后面的文章中继续为大家介绍更多相关的知识,更多精彩请持续关注我们。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31