京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的高速公路信息化_数据分析师
近年来,大数据风靡一时,各行各业都在探讨大数据思维与技术在本行业的应用。高速公路是否可以应用大数据解决相关问题呢?
近期,由中国公路学会主办的第十六届中国高速公路信息化研讨会暨技术产品展示会在山东青岛召开,不少代表对大数据在交通运输行业的应用提出了自己的精彩见解。
公路海量数据潜在价值巨大
据了解,学界将大数据特点归纳为4个V,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。事实上,以前并非没有数据挖掘,而大数据理论则与传统的数据挖掘存在差异。
西安公路研究院姬建岗介绍说,传统数据挖掘采用的数学方法通常是找到一些自变量与因变量的关系,形成一个因变量与一系列自变量的因果关系,建立一个方程式,继而进行结果的计算。而大数据恰恰是对上述结果的逆向求解,即通过大量数据找到关联,再去寻找其中蕴含的关系式。大数据是知其然而不必知其所以然,外行通过大数据分析可以打败内行。
长安大学教授许宏科则介绍说,当数据取得时,可能是杂乱无章、看不出规律,但运用作图、造表、各种形式的方程拟合、计算某些特征量等手段便可找出数据的规律性。
数据挖掘可甄别逃费车辆
山东省交通运输厅高速公路收费结算中心徐清峻介绍了如何应用数据挖掘实现收费稽查的目的。据了解,山东省专门建设了一套稽查平台。该平台根据设定的算法,定期对全省联网收费数据集中进行逐条甄别,对于符合逃费特征的车辆进行标识和汇总,继而自动提醒相关部门和各收费站。
算法很关键。徐清峻分析说,看似正常的一条条车道业务流水,哪些车辆具有逃费嫌疑呢?单条流水自然无法判定,需要结合多条车道,但山东省高速公路每个月产生约五千万条的收费数据,海量的收费流水数据让人晕头转向。
为此,他们首先分析各种能够成功偷逃通行费的行为特征,继而构建能甄别这些数据的唯一算法,这样就能通过系统找出嫌疑车辆。当然最终确认仍需要通过现场验证。
大数据离不开云计算
近年来,与大数据一道,云计算也成为流行的热门词汇。
据了解,云计算是将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和信息服务。在许宏科看来,大数据的应用需要云计算助力。
许宏科分析说,围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现,因此处理海量数据更加容易、更加便宜和迅速。大数据的处理技术正在改变目前的计算机运行模式,大数据的存储和管理要求,使得云数据库的建立成为必要条件。
据介绍,2014年交通运输部开展的交通运输科技计划项目中的信息化技术研究计划,将基于云计算的交通运输数据交换与处理关键技术、综合交通运行监测与信息服务关键技术作为一个重要方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27