京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析研究院原创作品, 转载需授权
随着互联网迅猛发展,各大公司沉淀了很多的数据,如何找出藏在这些数据背后的规律,利用这些数据来给公司创造价值,作为一个新手面对这些问题的时候,你是不是考虑怎么快速学习数据分析呢?
如果你的自学能力很强,那么你可以参考网上的推荐书籍,自己拿起书本,找些案例开始学习。
如果你需要前辈的指导,那么你可以按照CDA数据分析研究院的老师推荐的学习方法来学习数据分析:
首先,数据分析师需要三个方面的能力:技术(编程),数据分析方法,行业知识。
一、技术
主要包括excel,sql,power BI
1)技术方面就是 SQL,主要学习数据库语言的增删查改, 建议从mysql入手,主要学习关系数据库管理系统,主要学习单表查询以及多表查询,利用数据库进行简单的分析
2)Excel 也是要会一点的。不过 Excel 这种常用的办公软件,比如说做个图,算算总合、平均之类的,熟练使用vlookup等几个常用函数,稍微复杂点的数据透视表 (pivot) 就够了。
3)如果SQL 上手比较快,时间充裕,那就练练 power BI, 主要目的是看看都有什么样的图表,感受一下各自适用什么样的场景。具体怎么做图不是非常重要,真要用的时候搜索一下现学就好了。最后就是学会使用power BI制作报表以及通过报表思考业务遇到的问题。
二、数据分析方法
常用的数据分析方法包括以下13种:
1. 描述统计
描述性统计是指运用制表和分类,图形以及计算概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
2. 假设检验
参数检验
参数检验主要包括U验和T检验
1)U验 使用条件:当样本含量n较大时,样本值符合正态分布
2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布
非参数检验
非参数检验是针对总体分布情况做的假设,
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
3. 信度分析:检査测量的可信度,例如调查问卷的真实性。
4. 列联表分析:用于分析离散变量或定型变量之间是否存在相关。
5. 相关分析:研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
6. 方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
7. 回归分析
包括:一元线性回归分析、多元线性回归分析、Logistic回归分析以及其他回归方法:非线性回归、有序回归、加权回归等
8. 聚类分析:样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。
9. 判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体
10. 主成分分析:将彼此相关的一组指标转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。
11. 因子分析:一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法
12. R0C分析
R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线
13. 其他分析方法
学习分析方法内容,使用方法,搞清楚这些算法的使用条件背景,你就可以轻松入门一名数据分析师了,在学习数据分析方法的过程中,有什么不懂得地方可以咨询CDA数据分析老师。也可以让CDA数据分析老师给您做一份详细的数据分析学习方案。
三、行业知识
这一部分就真的没有什么书可以看的了,基本都靠搜索,总结,思考,再搜索,总结,思考……如果平时对你的业务比较熟悉,这一部分会上手很快。
基本上把这些搞清楚,也差不多可以入门了吧。 数据分析入门并不难,入门之后的知识积累才是重点,如何在实际工作、项目中真正发挥数据分析的作用,产生价值。 希望新手学员可以尽快入门数据分析,如果有什么不懂的地方,可以咨询CDA数据分析研究院的老师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06