
现在很多人都想进入高薪岗位,这是人之常情。现如今由于大数据和数据分析的流行使得Python变得十分火爆,正所谓哪里有需求,哪里就有高薪。所以如果我们想进入数据分析行业就必须学习Python。下面我们就给大家解答一下学习Python的原因。
就目前而言,在市场上,Python技能需求增速达到将近两倍,在人才需求升级的同时,互联网公司对人才技能的要求也在逐渐提高。以数据分析师为例,2015年,超过40%的职位技能要求中只提到了SQL或HIVE,而到2018年,这一比例已降至三成以下,半数岗位要求候 选人还须掌握通用编程技能,比如Python、Java,数据挖掘技能,比如R语言,SAS,以及数据可视化等技能,其他岗位技能要求也普遍较过去更为严格。从分布上看,新兴技能占比提高显著。Python由于语法简洁,功能强大,且在人工智能、大数据方面展现出效率优势,越来越受到欢迎。从数据显示中我们发现Python技能需求增速达到174%,居于首位,Spark、Hadoop等大数据技能需求增幅也十分靠前。
其次就是信息安全领域需求占比最高的技术职位,在最近的几年里,信息安全领域尤其值得关注。尽管因企业数量不占优势,人才需求占比不高,但需求增幅超过60%,其中技术人才需求占比多达46.5%,高出互联网均值超过20个百分点。从人才需求大数据中,我们还发现,信息安全领域的技术人才需求中,机器学习、自然语言处理、深度学习等AI相关人才占比已达1.3%,体量虽不大,但却向我们传递了一个信息,信息安全行业正在向更高端、更高效、更智能的方向发展。而信息安全领域也是需要学习Python的,对Python的需求也是十分高的。
最后就是复合型人才竞争力碾压优势愈发明显,在互联网行业求职人才中,有26%的人掌握至少3种技能,更多的非技术人才开始掌握技术型技能。增长最快的五大技能分别是SQL、Python、Java、Tableau和Hive。从竞争力上看,多重技能人才也比以往更加吃香。
以技术职位为例,虽然不少企业在职位要求中只写了一项编程能力,但过半数公司在寻找人才时偏爱掌握多门编程语言的求职者,多重技能人才相对来说是比较好找工作的。而Python是其中比较容易上手的技能。在这篇文章中我们给大家介绍了我们为什么要学习Python的原因,具体来说就是市场需求量是十分大的,所以我们要学好Python。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05