京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Admond Lee
翻译 | Mika
CDA 数据分析研究院原创作品,转载需授权
作为一名数据科学家,在我们讨论如何通过正确的提问对问题进行定义前,让我们首先看到为什么提出正确的问题是如此重要。
在我的第一份数据科学实习中,我对这个项目非常兴奋,只是想尽快动手,而没有弄清楚全局情况。
我首先试着弄清楚我要解决的问题,但却没有深入细节确定具体的目标。更糟糕的是,我没有质疑所要分析和预测的数据集。最终经过两周的数据清理和分析,我才意识到我对数据做出了错误的假设。所有这些都是因为我对问题和数据缺乏了解。
这就是我的故事。
我认为提出正确的问题和定义问题陈述是许多数据科学初学者(包括我)面临的一项挑战。
提问很容易,每个人都会提问。但是提出正确的问题就不容易了,因为我们不知道哪些问题才是正确的。
在本文中,我将与你分享作为数据科学家,该如何提出正确问题并定义问题陈述。希望能够帮助你应对数据科学生涯中的这些挑战。
让我们开始吧!
如何通过提出正确的问题来定义问题陈述?
不管你是否承认,定义问题陈述(或数据科学问题)是数据科学管道中最重要的步骤之一。
在下面的部分中,我们将通过四个步骤来定义问题陈述。
1.理解需要解决的问题
需要确定的机会是什么?你的受众所面临的痛点是什么?
通常情况下,Kaggle竞赛中的问题陈述都是明确定义的。我们可以放心使用给出的数据集,而不必担心问题陈述给其他人带来的问题,或如何获取数据等。
但是,实际工作环境中的问题并没有被定义,有些问题很暧昧,很模糊。
大多数时候,公司领导层只会给我们一个问题:我有这个“问题”,你能帮我解决这个问题吗?仅此而已。
我们的任务是帮助他们将问题构建成数据科学问题,从他们的角度看问题。
换句话说,我们需要有同理心。
这时我们需要从领导层的角度,将我们的技术知识与数据结合起来,提出一个促进商业价值的解决方案。
2.根据问题评估情况
在构建了数据科学问题之后,接下来就需要根据问题对形势进行评估。
这意味着我们需要谨慎分析风险、成本、收益、突发事项、法规、资源和需求。
为了进一步说明,这里可以大致分为以下几个问题:
这个问题有什么要求?
有哪些假设和约束条件?
有哪些资源?这里指的是人员和资金,计算机系统(GPU,可用的CPU),仪器等。
3.了解项目的潜在风险和收益
这个步骤是可选的,具体取决于项目的大小和规模。
有些项目可能只处于探索阶段,因此如果项目投入生产,潜在风险可能会降低,且未来收益会更大。
这个项目相关的主要成本是多少?
有哪些潜在的收益?
有哪些潜在的风险?
潜在风险中会有哪些突发情况?
回答这些问题有助于更好地了解情况,并了解项目涉及的内容。对项目有深入的了解有助于评估之前定义问题陈述的有效性。
4.定义评估项目成功的指标
这个很重要。你不能只有需要解决的问题,而没有任何指标来评估项目是否成功。
这归结为一个简单的问题:你希望在项目结束时实现什么目标?
成果应该是可衡量的,而不是无法量化的。某些指标可能无法立即使用,因此还需要进行数据收集和预处理。
你必须与领导层讨论要使用的指标,并且在提出正确问题的早期就应该进行讨论。
定义成功标准非常重要,因为这有助于你在项目整个生命周期内对其进行评估。
结语
我们的最终目标是提出更好的问题和定义明确的问题陈述,从而用数据科学方法进行解决,并生成业务见解和可操作的计划。
谢谢你的阅读。希望本文能够让你理解提出正确问题以及如何构建问题陈述的重要性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31