京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在上一篇文章中给大家介绍了数据分析中容易出现的错误,数据分析汇总容易出现的错误主要就是数据可视化出现的问题、过于依赖绝对值、逻辑不通、以偏概全的测试、相关关系和因果关系之间的混乱。在上一篇文章中我们给大家介绍了前四个内容,下面我们给大家讲解一下相关关系和因果关系之间的混乱。
数据分析中容易出现的问题有相关关系和因果关系之间的混乱。这是由于在数据分析的逻辑里,若将相关性和因果关系混淆,也会导致成本错误。大部分的数据分析在处理大数据时假设相关关系直接影响因果关系,使用大数据来理解两个变量之间的相关性通常是一个很好的实践方法,但总是使用 “因果”类比可能导致虚假的预测和无效的决定。要想实现利用大数据的最好效果,必须理解相关关系和根源的区别。基于相关性的决定可能足以采取行动,我们不需要知道原因,但这还是完全依赖于数据的类型和要解决的问题。数据科学中相关关系不是因果关系。如果两个关系出现彼此相关的情况,也不意味着是一个导致了另一个的产生。
数据分析就是定性分析和定量分析的相互结合、不断验证的过程,因此随着实际操作,总会出现大大小小的问题。但若能保持耐心,认真对待数据,便会使服务于企业的数据更加准确。另外,有其他的疑问,也可咨询高级数据分析师,他们的经验相当丰富。
说白了,数据分析工作中容易出现的问题主要是遇到一些不可控的问题。这些问题就是搜集好相关数据后,却不知该从何处开始分析、投入大量的时间成本后,没想到栽在工具使用上,分析的结果不尽人意、分析后写出来的数据报告自己看不下去。这就需要我们明确,数据分析最终目的,不是数据分析本身,而是其结果能作为硬性指标进而指导最终的应用层决策;然后,在进行数据分析时,善于从多方位审视过程以及结果,尽量减少以下几个方面的失误,会帮助得出更精确的数据分析报告。
以上的内容就是小编为大家整理的数据分析中常见的数据分析问题,大家在进行数据分析的时候还是要注意细节的,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31