
大家都知道,数据分析师是需要学习很多的知识,大家进行数据分析知识学习的时候需要对数据分析知识有一个清晰的知识体系,重点学习其中的重点知识就能节约时间从而更高效地开始数据分析师的职业成长生涯。那么大家知道不知道数据分析师需要重点学习什么技能呢?下面就由小编为大家解答一下这个问题。
首先就是学习编程,如果学会了编程,那么学起别的知识就能够显得十分轻松。一般来说,会不会编程就是区别初级数据分析师和高级数据分析师的分水岭。如果想成为高级数据分析师的话,那么一定要学习编程知识。有关数据分析的编程语言有Python和R语言。Python是面向未来的语言,无论从流行度、可用性还是学习难度来讲,Python都是最好的入门语言。而R语言倾向于统计分析、绘图等。统计学家或者学统计学的喜欢用R语言,大家在学习编程的话一定不要错过任何一个。我们在学习Python的时候,一开始学习的都是基础,当然了,如果做数据分析的话,基础肯定是不够的,既然是学习数据分析,肯定就要有数据才行,数据从哪里来?需要从互联网上获取。大家都知道,互联网上的信息何其之多,必须要对其加以过滤处理,提取我们想要的信息。这就要用到Python爬虫,爬虫主要就是为数据分析中的数据获取来提供帮助的。
然后就是学习SQL了,大家在学习数据分析的时候,最难最重要的就是编程能力,如果掌握了编程,那么后面的就显得很简单了。Sql就是数据库,既然是跟数据打交道,就免不了要使用数据库。就目前而言,主要有四种数据库:分别是SQLite、MySQL、MongoDB、Redis。SQLite 是一个文件型轻量级数据库,它的处理速度很快,在数据量不是很大的情况下,可以使用SQLite。MongoDB 是一个面向文档的非关系型数据库,它功能强大、灵活、易于拓展。Redis 是一个使用ANSI C 编写的高性能key-value数据库,使用内存作为主存储器。MySQL 是一个应用极其广泛的关系型数据库,它是开源免费的,可以支持大型数据库,很多中小型企业都是用的MySQL。
上面提到的内容就是小编要给大家讲解的数据分析师需要重点学习的知识。大家在进行学习数据分析的时候一定要注意数据库和编程的学习,这两个技能掌握了,那么别的技能学习起来就会显得很简单了。希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10