
就目前而言,很多人都想跳脱目前的工作状态,转行或跨界到数据分析领域,期盼自己可以做出点成绩出来。寻寻觅觅间,有的人转行或跨界成功了,有的人转行或跨界失败了;有的人生活品质提高了,有的人还在人生十字口徘徊不前。有不少人人看到数据分析行业的就业前景和当前的人才需求,就想转行或跨界到数据分析行业,但是对于数据分析并不是很了解,这就显得有些草率和迷茫了。那么转行或跨界数据分析行业到底需要做什么呢?
如果转行或跨界做数据分析的话,需要学习很多的东西,首先需要了解的是数据分析的步骤,一般来说,数据分析的步骤就是提出问题、理解数据、数据清洗、构建模型、数据可视化等步骤,下面我们来一一解答一下这个问题。
首先是提出问题,我们都知道,一切数据分析的目的都是为了解决我们生活或工作中的实际问题,明确的问题为我们后续的数据分析提供了一个大的方向和目的。提出问题以后我们需要理解数据,理解数据需要采集数据、导入数据、查看数据集的信息,包括描述统计信息,从整体上理解数据。数据清洗就是对数据进行预处理。构建模型就是对清洗过的数据进行分析。简单的分析就是得出一些业务指标;复杂的分析就要用到机器学习的算法来构建模型。数据可视化就是与他人交流你的研究成果,最好的展示方式就是图表。
数据分析中最重要的就是提出问题,这就需要我们和业务人员一起讨论明确他们的需求以及各个指标的计算公式。从而去改进业务中的不合理的地方。其实数据分析的工作中有很多时间都是用在了数据清洗的工作上,由此可见数据分析中数据清洗的重要性了。我们在数据清洗中需要处理缺失数据、删除异常值等等。以便于后期的数据探索和分析。一般来说,原始数据经常会由于记录缺失错误,这时候就会导致有些数据是缺失的。我们可以采用两种办法来处理:第一种就是直接删除缺失的数据;第二种就是通过建立模型进行插值的办法来补充这些数据。
现在的社会就是一个商业社会,如果想转行跨界到数据分析领域,一定要注意上面小编提到的内容,应该会给你的转行跨界之路带来不少帮助和启发。小编觉得,无论是转行成功,抑或跨界失败,我们都要拥有承担后果的能力。最后给大家奉献一句箴言——只有自己拥有了核心竞争力,才不会被逼到淘汰的境地!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10