京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在前面提到的内容中我们不难发现数据分析能够在企业发挥很大的作用,但是对于数据分析还是需要学习很多的知识,尤其是在进行数据分析的时候需要重视细节。因为数据分析需要严谨的态度,如果忽视了细节,那么就会一着不慎满盘皆输。在表达数据分析结果的时候我们会用到很多的图表。这样才能够做好数据分析。在这篇文章中我们会为大家具体讲讲数据分析中用到的图表。
我们在进行数据分析的时候,需要将数据应用到场景,这是因为每个行业都有对数据需求的相关场景,将数据带入到场景里,才能真正实现数据驱动。提取确定的数据关键指标,根据不同的量度做出横向或纵向的对比,如果能够进行有针对性的分析,能够帮助我们更加全面地把握数据价值。这就需要我们了解行业特点,熟悉业务,确定数据指标,选择合适的图表进行分析。
那么怎么做好图表呢?对于不同的分析结果需要用不同的图表来表达,图表有很多,下面就给大家具体讲一下各个图表的实际情况。
首先说一下散点图。散点图是显示若干数据系列中各数值之间的关系,适用于三维数据集,但其中只有两维需要比较。散点图的有点就是对于处理值的分布和数据点的分簇,散点图都很理想。缺点就是在点状图中显示多个序列看上去非常混乱。
接着说条形图,条形图适合用于显示各个项目之间的比较情况,可参考柱状图。优势也很明显,每个条都清晰表示数据,直观。
饼状图适用于显示各项的大小与各项总和的比例。优点就是明确显示数据的比例情况,尤其合适渠道来源等场景。缺点就是肉眼对面积大小不敏感。
雷达图适用于雷达图适用于多维数据(四维以上),且每个维度必须可以排序,数据点一般6个左右,太多的话辨别起来有困难。优点主要用来了解公司各项数据指标的变动情形及其好坏趋向。
折线图适合二维的大数据集,还适合多个二维数据集的比较。容易反应出数据变化的趋势。
柱状图适用场合是二维数据集,但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。
还有很多图,但是这些图是比较流行的,这些图表就能够很好的表达出数据分析的结果了,希望这篇文章能够给大家带来帮助,大家在进行数据分析的时候一定要这一爱好数据分析的数据可视化,这样才能够做好数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27