
在前面提到的内容中我们不难发现数据分析能够在企业发挥很大的作用,但是对于数据分析还是需要学习很多的知识,尤其是在进行数据分析的时候需要重视细节。因为数据分析需要严谨的态度,如果忽视了细节,那么就会一着不慎满盘皆输。在表达数据分析结果的时候我们会用到很多的图表。这样才能够做好数据分析。在这篇文章中我们会为大家具体讲讲数据分析中用到的图表。
我们在进行数据分析的时候,需要将数据应用到场景,这是因为每个行业都有对数据需求的相关场景,将数据带入到场景里,才能真正实现数据驱动。提取确定的数据关键指标,根据不同的量度做出横向或纵向的对比,如果能够进行有针对性的分析,能够帮助我们更加全面地把握数据价值。这就需要我们了解行业特点,熟悉业务,确定数据指标,选择合适的图表进行分析。
那么怎么做好图表呢?对于不同的分析结果需要用不同的图表来表达,图表有很多,下面就给大家具体讲一下各个图表的实际情况。
首先说一下散点图。散点图是显示若干数据系列中各数值之间的关系,适用于三维数据集,但其中只有两维需要比较。散点图的有点就是对于处理值的分布和数据点的分簇,散点图都很理想。缺点就是在点状图中显示多个序列看上去非常混乱。
接着说条形图,条形图适合用于显示各个项目之间的比较情况,可参考柱状图。优势也很明显,每个条都清晰表示数据,直观。
饼状图适用于显示各项的大小与各项总和的比例。优点就是明确显示数据的比例情况,尤其合适渠道来源等场景。缺点就是肉眼对面积大小不敏感。
雷达图适用于雷达图适用于多维数据(四维以上),且每个维度必须可以排序,数据点一般6个左右,太多的话辨别起来有困难。优点主要用来了解公司各项数据指标的变动情形及其好坏趋向。
折线图适合二维的大数据集,还适合多个二维数据集的比较。容易反应出数据变化的趋势。
柱状图适用场合是二维数据集,但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况。
还有很多图,但是这些图是比较流行的,这些图表就能够很好的表达出数据分析的结果了,希望这篇文章能够给大家带来帮助,大家在进行数据分析的时候一定要这一爱好数据分析的数据可视化,这样才能够做好数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10