京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们为大家解答了数据分析的思维方式,数据分析最需要注意的就是思维的方式,这是因为数据分析中最难的地方就是思维的能力,毕竟技能可以学到手,但是思维是不能够模仿的,现在就给大家讲一讲数据分析的现状。
就目前而言,大多数的数据分析工作有两部分组成,第一种就是预测问题,第二种就是预测和发现并解决问题。预测就是对数值走势的预测,也包含确定产品方向。而发现并解决问题包括了促进业务增长等。在数据分析工作的时候并且这之中工作量最大的还是发现问题,分析问题并解决问题。这就需要大家多多用心。
其实数据分析中,数据分析师其实还是一种替代品而已,可以说起到了一个过渡的作用,如果出现了某种成熟的数据产品出现以后,那么这个就没有了意义。而现在,获取数据和分析数据的成本较高,但发展的需要又不得不去做,因此需要专人去做分析。当数据产品成熟并渗透到各个业务线后,随着大家对数据认知的提升,人人都做出可以简单方便的分析,甚至设计的产品系统就会自动进行分析产出结果。不要低估数据产品,这时候数据产品替代的就是数据分析师和基础运营的工作。
而现在大家都认为金融业是个高大上的行业,其实金融业在几百年的发展至今对数据的运用就是个很好的说明,从历史的收益来看,往年采取量化交易的基金公司年化收益率均处在中上水平且相对稳定,因此对大规模资产配置是很有利的。金融业如此,其他行业亦是如此,因为人工转智能是社会发展的必然趋势,所以说,数据分析师只是起到了一个过渡的作用,这也说明了为什么未来数据分析师下岗是必然的。当想要以数据驱动产品时,先要分析出驱动的方向和方法,验证可行后再把规则和逻辑落地成数据产品,这是一个循环的过程。当产品化程度很高时,数据分析师或许会消失,但数据分析永远不会消失,并且都会广泛的出现在各个人身上。
以上的内容就是小编对数据分析的具体看法,如果有不严谨的地方还请大家多多见谅,大家在进行数据分析工作的时候还是想想未来的路怎么走,这样才能够规划好自己的人生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06