京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析是时下十分热门的一个就业方向。在互联网迅速膨胀的年代,各行各业都少不了数据分析。数据分析是一门很深的学问,其中蕴含了不少知识。今天我们就从3个方面来为大家简单地介绍一下数据分析的相关知识,希望今天的内容可以帮助到那些想转行进入数据分析领域的朋友,这也算是数据分析的入门教程了,可以对初学者或初入数据分析行业的人,对数据分析有一个更深一步的了解和巩固。
一、什么是数据分析
数据是数据分析的首要材料。它可以是汇总整理后的数据,也可以是未汇总的原始数据。数据分析是数据分析师的一切。数据分析师说白了就是分析数据的一类人,以数据为中心,运用各种分析方法得到自己的结论。
说到这个就值得来为大家说一下什么是心智模型。心智模型是就是对外界的假设和确信的观点,这对于数据的解释是非常有影响的。明确自己的心智模型、了解自己的缺陷是得到正确统计模型(统计模型是数据分析的根基)的关键。还有就是管理好管理好自己的心智模型是数据分析工作的重点。
二、如何成为一个数据分析师
一般,数据分析师分为两类。第一类是编程类;第二类是非编程类。无论哪一类,都需要先入门数据分析。小编为大家推荐三本入门必看书籍:《深入浅出数据分析》可快速了解自己是否适合数据分析职位;《谁说菜鸟不会数据分析》了解数据分析流程和方法;《数据化管理》帮助了解数据在市场、营销等方面的应用。第一类编程类需要的技术有Excel、PPT、以及SQL等;第二类非编程类需要的技术有Python、R编程。
三、工作流程
1:确定问题。数据分析师的首要步骤就是认清问题,进而解决问题。明白客户的问题是什么,多提问题、多咨询以确保自己得到信息的完整性,帮助客户来思考问题。所以,认清问题、明确分析目的是数据分析的首要任务。
2:分解问题。把大问题拆解成小问题然后进行分析解决。问题拆解以后,我们经常使用的一个分析方法是对比分析法,找出数据中影响最大的数据变量,也就是找出差异最大的数据。对比方法是数据分析中最常用、最管用的方法之一。除了对比方法,我们还可以基准假设等等一系列方法。
3:评估问题。问题已经被拆解,我们需要评估是否帮助我们实现目标。我们采用的也是对比方法或者其他统计学中的方法。评估问题的目的是找出解决问题的方法,从而形成自己的判断。
4:得出决策。通过一系列分析,终于得到了解决问题的策略。然后用简单、专业、直截了当的方法呈现出来,以确保自己的意见传达到位。
最后需要告诉大家的就是,想要学习数据分析也是一件很困难的事情,是需要大家一步一步踏实往前走的,所以大家在学习的时候,一定要用心学习,做一名合格的数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31