京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在很多人都听说过数据分析和数据科学,但是很多人不知道怎么区分数据分析和数据科学,可能对数据分析和数据科学会造成混淆。大家都知道,数据分析和数据科学这两种事物都是有一定的关联的,这是因为提供了不同的结果并采取了不同的方法。但是进行数据分析工作的时候一定要区分好数据分析和数据科学,那么什么数据分析呢?什么是数据科学呢?下面就由小编为大家解答一下这个问题。
先给大家说一下什么是数据科学?数据科学是一个多学科领域,专注于从大量的数据中找到分析方式。该领域主要注重发掘我们没有意识到我们还不清楚的事情的答案。数据科学专家使用几种不同的技术来获得答案,包括计算机科学,统计学和机器学习,通过海量数据集进行解析,努力为尚未被认识到的问题提供解决方案。数据科学家的主要目标是找出问题并找出潜在的研究途径,而不用担心具体的答案,更多的重点放在寻找正确的问题上。
那么什么是数据分析?数据分析专注于在现有的数据集里面,处理和执行统计分析。分析人员集中于创建捕获,处理和组织数据的方法,以发现当前问题的切实可行的见解,并建立呈现此数据的最佳方式。通俗来说,数据分析的领域的目的就是解决问题,发现那些我们想到的问题,这些问题是否答案并不是重要的事情,重要的是,它的基础是产生可以立即改进的结果。
那么这数据分析和数据科学的区别是什么呢?数据科学和数据分析都有属于自己的领域,数据分析和数据科学的范围不同。数据科学是一个涵盖性术语,包含了一些可用于挖掘大型数据集的领域。数据分析是它更加集中的版本,甚至可以被视为更大的过程的一部分。
一般来说,数据分析则在重点突出时效果更好,需要基于现有数据的答案。数据科学产生更广泛的见解,集中讨论应该问哪些问题,而大数据分析则强调发现被问问题的答案。
通过上面的内容,想必大家看了这篇文章以后已经知道了数据分析和数据科学的具体区别了吧,上面的内容就是对于这两个问题的解答了,大家在研究数据分析的时候一定要搞明白这两个概念,这样才能够更好的理解大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31