京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在之前我们给大家讲了讲什么是数据分析以及数据分析的目的,数据分析就是通过使用合适的方法进行统计,统计也不是随随便便的统计的,需要找对方法。统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。而数据分析的目的就是通过分析数据找到企业未来的发展情况。今天就给大家讲一下如何分析数据分析。
那么如何进行数据分析?首先我们需要进行数据建模。数据建模的意义在于明白了数据分析动机。搭建数据指标模型需要考虑商业模式、业务场景、最初动机。搭建数据分析模具的时候需要对现有指标进行优化性改造,以及不同行业交叉借鉴其他行业制定的数据指标,还需要发掘更多有价值有意义的数据指标。
那么如何确定数据来源呢?大家都知道,数据分析的对象是数据,数据从哪来?数据本身的准确性从根本上影响着分析结果的有效性,所以确保有效、靠谱的数据来源至关重要。对于数据获取的来源有很多,我们一般都是使用数据分析系统、定量调研和定性调研和委托专业的调研机构。数据分析系统一般存在每个公司的数据库中,公司自有的数据是质量不错的数据,也是最可靠、最全面的。一般而言,有条件的情况下都是以内部数据为准。而定量调研和定性调研我们需要拿起电话、走上街头、发放问卷都不失为一种可行的办法。同时我们可以专业调研机构。一般而言,权威结构统计调研的数据还是具有极强的参考性的,但也不能完全免于主观因素。
在数据分析的过程中,我们还要使用一定的方法使得数据的使用有意义,我们需要使用数据分析工具以及对数据分析进行加工,这样才能够把数据分析做的很出色。一般来说,数据分析工具有Excel、MySQL等等,学会使用了这些工具才能够做好数据分析这项工作。
大家在学习数据分析的时候一定要注意数据工具的学习以及对于业务知识的重视,这样不但能够学到有用的知识,还能够独立做好数据分析工作,所以说,数据分析行业的门槛是比较高的,不过只要我们能够静下心来学习,那么这根本不是事儿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31