京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于数据分析行业很多人不是很了解,人们只是听到了数据分析这个行业前景和薪资不错,但是对于数据分析行业并不是很清楚,尤其是对于数据分析师所需要的技能不是很了解,一般来说,数据分析行业需要懂业务、懂管理以及懂分析即可。但是要想成为数据科学家就没那么简单了,数据科学家还需要学会计算机科学、数学、统计学、数据挖掘、数据可视化、计算机编码能力等等技能,而数据工程师需要学习的知识也是比较多的,下面就给大家介绍一下具体的内容。
首先,如果成为一个优秀的数据分析师,那么你就必须要懂得业务。什么是懂的业务,就是熟悉自己的行业知识。知道自己的公司业务以及工作流程,如果这些都不知道,那么分析的数据的准确性就很容易被别人质疑。其次就是懂得管理。什么是懂管理呢?懂管理就是搭建数据分析框架的要求,以及针对数据分析结论提出有指导意义的分析建议。懂得管理是一个数据分析师必备的素质。最后也是最重要的就是懂得分析,懂得分析就是指掌握数据分析基本原理与一些有效的方法进行数据分析,这样通过分析得出一个重要的结果。
那么数据科学家所需的技能是什么呢?数据科学家首先需要学习计算机科学,一般来说,数据科学家大多要求具备编程、计算机科学相关的专业背景。学习了计算机科学等知识就需要学会数学、统计、数据挖掘等知识。其中,面向统计分析的开源编程语言及其运行环境r语言最近备受瞩目。r语言的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。处理上面需要的知识外,数据分析师还需要重视数据可视化的知识。这是因为信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,需要使用一系列工具从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。
介于数据分析师和数据科学家的职业是数据工程师,那么数据工程师需要学习什么知识呢?一般需要学习数学及统计学相关的知识。只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。当然还需要学习计算机编码能力。实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素,因为许多数据的价值来自于挖掘的过程,大家必须要自己动手去做出数据处理。最后也是需要学习不同行业的知识。数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。
以上的内容就是数据分析行业各个阶段的所需要的技能的具体内容了。如果你想要成为一名优秀的数据分析师,要懂业务、还有就是具有编程、计算机科学相关的专业背景;当然还要具有计算机编码能力。希望以上的内容可以对您有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31