
在科技高度发展的今天,很多技术不断的进步。就在最近的几年里,出现了很多的名词,比如大数据、物联网、云计算、人工智能等等。其中大数据的发展是非常普及的,现在很多的行业积累了很多的原始数据,通过数据的分析我们可以得到对企业的决策有帮助的数据,也就是说我们可以通过大数据去看清未来。当然,大数据离不开数据分析,数据分析离不开数据,但是海量的数据总是出现很多我们需要的数据,以及我们需要的数据存在杂质,需要我们对数据的清洗才能保证数据的可靠性。一般来说,数据中是存在噪音的,那么噪音是怎么清洗呢?本文提供了三个方法,分别是分箱法、聚类法、回归法。这三种方法各有各的优势,能够对噪音全方位的清理。
首先来给大家说一下什么是分箱法,所谓的分箱法,就是将需要处理的数据根据一定的规则放进箱子里,然后进行测试每一个箱子里的数据,并根据数据中的各个箱子的实际情况进行采取方法处理数据。看到这里很多朋友只是稍微明白了,但是并不知道怎么分箱。如何分箱呢?我们可以按照记录的行数进行分箱,使得每箱有一个相同的记录数。或者我们把每个箱的区间范围设置一个常数,这样我们就能够根据区间的范围进行分箱。其实我们也可以自定义区间进行分箱。这三种方式都是可以的。分好箱号,我们可以求每一个箱的平均值,中位数、或者使用极值来绘制折线图,一般来说,折线图的宽度越大,光滑程度也就越明显。
其次给大家说一下回归法。回归法就是利用了函数的数据进行绘制图像,然后对图像进行光滑处理。回归法有两种,一种是单线性回归,一种是多线性回归。单线性回归就是找出两个属性的最佳直线,能够从一个属性预测另一个属性。多线性回归就是找到很多个属性,从而将数据拟合到一个多维面,这样就能够消除噪声。
最后给大家说一下聚类法,所谓聚类法就是将抽象的对象进行集合分组,成为不同的集合,找到在集合意外的孤点,这些孤点就是噪声。这样就能够直接发现噪点,然后进行清除即可。
通过上述的内容的描述想必大家已经清楚了噪声清除的具体做法了吧,希望这篇文章能够给大家带来帮助,大家在清除噪声的时候可以使用上面提到的方法,这样才能够更好的清理噪声。最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07