
就目前而言,很多人对于大数据都有一定的了解,由于数据分析这一行业具有未来的前瞻性,使得数据分析具有了十分明朗的前景,于是很多人对于数据分析行业是比较向往的,而数据分析行业里面也细分很多职业,那么数据分析行业都有哪些职业呢?一般来说,数据分析行业就是有数据分析师,数据挖掘工程师,软件工程师以及统计人员。
统计学家
统计人员是整个数据分析工作的最前沿的工作人员,很多数据的提取就是由统计人员找到的数据,并运用统计知识去解决很多行业的问题,统计人员一般使用设计调查,通过设计问卷以及设计实验等方法进行统计,这样才能够搜集好相应的数据。获得了相应的数据,还需要对数据进行轻分析和轻解读的能力,这样才能够把研究好的数据递交给别的岗位。
软件工程师
对于软件工程师也是数据分析的重要职位,软件工程师的工作主要就是开发测试以及审核系统的应用方面。重要负责组建程序。最终将数据进行处理并分析出结果。软件工程师是比较常见的职业,这是因为软件工程师出现的时间比较长,所以软件分析师是数据分析行业不可或缺的一部分。
软件工程师一般负责前端系统以及后端系统,这两个系统的相辅相成对数据的收集处理有一定的帮助,而通过网络以及移动终端和操作系统的发展使得数据更清楚的呈现给其他的岗位。
数据挖掘工程师
数据挖掘工程师就是对于数据的挖掘以及对数据的开发构建等工作。数据挖掘工程师针所面对的就是数据库,负责处理机器与人员提供的数据,从数据中提取出对项目有关的数据以及可能有帮助的数据,这样才能够获得更好 数据分析结果。这就需要数据挖掘工程师掌握很多技能,比如一定的编程能力,掌握各种的机器语言,能够熟练的使用各种数据分析工具,这样才能够把更好的数据交给数据分析团队。
数据分析师
数据分析师就是将统计人员以及数据挖掘工程师提供的数据进行处理并分析,这里说的处理就是去除肮脏数据,对数据环境进行净化,这样才能够让数据更加干净。同时数据分析师需要对数据进行分析,将外部数据和内部数据结合在一起,通过建模的形式去并将分析结果以干练简明的形式表达出来,从而满足业务的需求。
通过上面的描述,想必大家已经知道了数据分析的职位的相关事项了吧,大家在准备进入数据分析这个行业的时候一定要多多了解好这些职位的不同,找到一个适合自己的岗位,这样也是对自己负责,也是对公司负责。不过随着数据分析行业的日益渗透,全社会关于数据分析类的职位会越来越多,而不再仅于这些职业。希望大家能够从这篇文章中获得帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08