
现如今,大数据越来越流行了,可以说现在无论是什么公司,都积累了大量的原始数据,数据的作用想必大家都是比较清楚的,而在这个信息对称的时代,数据分析师的工作将为公司指明发展的道路,在企业的地位备受重视。那么数据分析师需要学习什么知识呢?一般来说,需要学习数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。
一、对数据库有充分的理解
大家都知道,一般工厂中有存放产品的库房,所以就不难理解数据库的意义了,一般来说,数据都是大量的,如果存放这些大量的数据就需要一个类似于工厂库房一样的东西里面,数据的存储是需要库房,就叫做数据库。数据分析师必须知道数据库的用途以及存在的意义,这是因为数据库是存储数据的地方。数据库有很多,如CouchDB,MongoDB,MySQL,PostgreSQL,Cassandra等。理解数据库并且能熟练使用它,这是数据分析师的一个基本能力。
二、能够掌握数据整理
数据分析师必须学会数据整理,所谓数据整理,是将原始数据转换成方便实用的格式。很多数据都不能直接的看到我们需要的东西,所以,通过整理数据就能够使数据可视化,就是创建和研究数据的视觉表现。数据报表是将数据分析和分析出的结果制作成报告。也是数据分析师的一个后续工作。这些技能是做数据分析师的主要技能。
三、掌握专业技能
很多数据分析师需要有专业技能,这里说的专业技能有社会学技能、财物管理、统计学技能、以及心理学。统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。对于社会学技能来说,从社会化角度看,人都有社会性质,收到群体心理的影响。倘若数据分析师没有社会学基本技能,很难对市场现象做出合理解释。当然,如果还能懂得财务管理知识和心理学知识那就最好不过了。这些都将会使数据分析师做数据分析的过程更容易。
四、懂得设计
数据分析师应该会制作报表成果,还应该注重图表的设计。这样才能够让数据更直观的呈现在人们面前。在运用图表表达数据分析师的观点时,图表的设计会直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则以后才能让结果清楚明了。如果图表十分乱,这就不能够让数据直接的表现出来。
五、能够随时贴近数据文化
数据分析中如果能够对各个数据文化有一个了解的话,就能够对数据有一个更加充足的认知。如果数据分析师拥有了数据分析的基本能力,还是需要学习很多数据的知识,上面提到的内容就是数据的基本需要的知识,靠这些是远远不够的,还要对数据文化进行详细的研读,这样才能够提高数据的分析能力。
六、提升个人能力
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。
拥有这些技能,再去做数据分析,数据也就比较容易多了,数据分析师要了解的知识就是上面提到的这些,需要学习的内容就是数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。希望这篇文章能够帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07