
作者: Cassie Kozyrkov
编译: Mika
本文为 CDA 数据分析师原创作品,转载需授权
> 关于作者:
Cassie Kozyrkov,Google首席决策师。致力于统计学, 机器学习 /人工智能、数据、决策科学。
数据科学是让数据变得有用的学科。在本文中我将对数据科学中的三个概念进行解读。
1. 定义数据科学
看到数据科学这个术语的早期历史,你会发现当时有两个概念是密不可分的。
· 大数据意味着要更多地利用计算机
· 统计学很难把纸上的算法通过计算机实现
因此,数据科学诞生了。最开始数据科学家的的定义是“能够编程的统计学家”。如今看来,这个说法并不准确,但首先让我们看到数据科学本身。
2003年的数据科学期刊中曾提出:"'数据科学'意味着任何与数据有关的内容。"我很同意这个观点,现在一切都离不开数据。
之后,我们看到了很多不同的观点,比如Conway的维恩图(下图),以及Mason和Wiggins的经典观点。
Drew Conway对数据科学的定义
我个人更喜欢维基百科上的定义:
数据科学一种"结合了统计、数据分析、机器学习及其相关方法的概念",以便用数据"理解和分析实际现象"。
这有些复杂了,让我们精简一下,即:
"数据科学是让数据有用的学科。"
你现在可能会想,但这也太精简了,“有用”这个词怎么能囊括所有这些术语呢?
那么让我们先看到下面的图。
统计学家和机器学习工程师之间的区别,并不是前者使用R语言而后者使用Python。由于许多原因,用SQL、R、Python进行分类是不明智的,如今你甚至可以用SQL进行机器学习。
新手还喜欢通过算法进行区分,许多大学课程也是这么安排的,这也是不明智的。最好不要用直方图、t检验以及神经网络进行分类。坦率地说,如果你很聪明,其实你可以用相同的算法解决任何数据科学问题。
我建议可以这样进行区分:
这指的是什么呢?当然是决定。你可以根据所需的事实,通过描述性分析得出决策。
我们的行动和决定会影响周围的世界。我们之前谈到要让数据变得有用,而这与现实世界的行动是紧密相关的。
以下是决策导向图,完成这三点能够让数据变得有用。
2. 数据挖掘
如果你不知道想做出什么样的决定,那么最好的做法就是去寻找灵感。这就称为数据挖掘、数据分析、描述性分析、探索性数据分析或(EDA)或知识发现(KD)。
分析的黄金法则:只对你所看到的做出结论。
你可以将数据集想象为在暗室中发现的一堆底片。数据挖掘就是让设备尽快曝光这些照片,看是否能从中得出启发。数据挖掘的黄金法则是:只能对你能看到的做出结论,不要对你看不到的内容做出判断,因为你需要统计数据等更多的专业知识。
数据挖掘的专业知识取决于检查数据的速度。一开始暗房会令人生畏,但其实也没什么大不了的,只是学会使用设备就行了。当你开始乐在其中时,你就可以称为数据分析师了;当你能够飞速地曝光照片时,你就可以称为分析师专家了。
3. 统计推断
灵感很容易获得,但严谨来之不易。如果你想重复利用数据,那么则需要专业的培训。作为本科和硕士都学统计学专业的人,我认为统计推断(简称统计)是三个领域中最难且最具哲学内涵的。想学好统计需要花费大量时间。
如果你打算做出高质量、风险可控的重要决策,那么你需要在分析团队中加入统计技能。在不确定的情况下,统计学是能改变你想法的学科。
4. 机器学习
机器学习实质上是使用例子而不是指令来实现操作。关于机器学习我曾写过一些文章,如关于机器学习与AI 的区别;如何入门机器学习等,如果感兴趣的话可以看看。
* The simplest explanation of machine learning you’ll ever read
https://hackernoon.com/the-simplest-explanation-of-machine-learning-youll-ever-read-bebc0700047c
* Are you using the term ‘AI’ incorrectly?
https://medium.com/@kozyrkov/are-you-using-the-term-ai-incorrectly-911ac23ab4f5
* Why businesses fail at machine learning
https://hackernoon.com/why-businesses-fail-at-machine-learning-fbff41c4d5db
5. 数据工程
那么数据工程是什么呢?数据工程指的是为数据科学团队提供数据的工作。数据工程本身就是一个复杂的领域,它更接近软件工程,而不是统计学。
数据工程和数据科学之间的差异是前后的区别。获取数据前的大部分技术工作都可以简单地称为“数据工程”,而得到数据后我们所做的一切都是“数据科学”。
6. 决策智能
决策智能是关于决策的,包括对根据大量数据进行决策,因此这也使其成为一个工程学科。它利用社会和管理科学的理念,增强数据科学的应用。
决策智能是社会和管理科学的组成部分。换而言之,它是数据科学的超集,而不涉及为通用用途创建基本方法之类的研究工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14